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Problem Definition

Feedback Vertex Set Parameter: k

Input: An undirected graph G and a positive
integer k.
Question: Does there exists a subset X of size
at most k such that G− X is acyclic?

X is called feedback-vertex set (fvs) of G.



Problem Definition

Feedback Vertex Set Parameter: k

Input: An undirected graph G and a positive
integer k.
Question: Does there exists a subset X of size
at most k such that G− X is acyclic?

X is called feedback-vertex set (fvs) of G.
Goal is to obtain a polynomial kernel for
Feedback Vertex Set.



What reduction rules we
already know?

Reduction.FVS
If there is a loop at a vertex v, delete v from the
graph and decrease k by one.



What reduction rules we
already know?

Multiplicity of a multiple edge does not influence
the set of feasible solutions to the instance (G, k).
Reduction.FVS
If there is an edge of multiplicity larger than 2,
reduce its multiplicity to 2.



What reduction rules we
already know?

Any vertex of degree at most 1 does not
participate in any cycle in G, so it can be deleted.
Reduction.FVS
If there is a vertex v of degree at most 1, delete v.



What reduction rules we
already know?

Concerning vertices of degree 2, observe that,
instead of including into the solution any such
vertex, we may as well include one of its
neighbors.
Reduction.FVS
If there is a vertex v of degree 2, delete v and
connect its two neighbors by a new edge.



What do we achieve after all
these?

After exhaustively applying these four reduction
rules, the resulting graph G

(P1) contains no loops,
(P2) has only single and double edges, and
(P3) has minimum vertex degree at least 3.



Stopping rule.

A rule that stops the algorithm if we already
exceeded our budget.
Reduction.FVS
If k < 0, terminate the algorithm and conclude
that (G, k) is a no-instance.



A picture :)

X

Y = V (G) \X



Maximum degree is d.
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Maximum degree is d.

X

Y = V (G) \X∑
v∈V(G)

degree(v) = 2|E(G)|



Maximum degree is d.

X

Y = V (G) \X

3|V(G)| ⩽
∑

v∈V(G)

degree(v) = 2|E(G)|



Maximum degree is d.

X

Y = V (G) \X

1.5|V(G)| ⩽ |E(G)|



Maximum degree is d.

X

Y = V (G) \X

|E(G)| ⩽ d|X|+ (|V(G)|− |X|− 1)



Maximum degree is d.

X

Y = V (G) \X

1.5|V(G)| ⩽ |E(G)| ⩽ d|X|+ (|V(G)|− |X|)



Maximum degree is d.

X

Y = V (G) \X

1.5|V(G)| ⩽ |E(G)| ⩽ d|X|+ (|V(G)|− |X|)

=⇒ |V(G)| ⩽ 2(d− 1)|X| ⩽ 2(d− 1)k.



Summarizing:

Lemma
If a graph G has minimum degree at least 3,
maximum degree at most d, and feedback vertex
set of size at most k, then it has less than
2(d− 1)k vertices and less than 2(d− 1)dk edges.



Summarizing: (possible to
prove)

Lemma
If a graph G has minimum degree at least 3,
maximum degree at most d, and feedback vertex
set of size at most k, then it has less than
(d+ 1)k vertices and less than 2dk edges.



A new rule

Reduction.FVS
If |V(G)| ⩾ (d+ 1)k or |E(G)| ⩾ 2dk, where d is
the maximum degree of G, then terminate the
algorithm and return that (G, k) is a no-instance.



So what do we need to get the
polynomial kernel?



So what do we need to get the
polynomial kernel?

Bound the maximum degree of the
graph by a polynomial in k.



Part 2: Recap
A Tale of 2 Matchings



A

B

Consider a bipartite graph one of whose parts (say B) is at
least twics as big as the other (call this A).



A

B

Assume that there are no isolated vertices in B.
bleh



Suppose, further, that for every subset S in A,
N(S) is at least twice as large as |S|.



S

N(S)

Suppose, further, that for every subset S in A,
N(S) is at least twice as large as |S|.



A

B

Then there exist two matchings saturating A,
bleh



A

B

Then there exist two matchings saturating A,
bleh



A

B

Then there exist two matchings saturating A,
and disjoint in B.



Claim:

If |B| ⩾ 2|A|, then there exists a subset X of A
such that:

there exists 2 matchings saturating the subset X

that are vertex-disjoint in B.

provided B does not have any isolated vertices.
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Claim:

If |B| ⩾ 2|A|, then there exists a subset X of A
such that:

there exists 2 matchings saturating the subset X

that are vertex-disjoint in B,

provided B does not have any isolated vertices.



Crucially: it turns out that the endpoints of the
matchings in B (the larger set) do not have
neighbors outside X.





A

B



q-Expansion Lemma

Let q ⩾ 1 be a positive integer and G be a bipartite graph with vertex
bipartition (A,B) such that

(i) |B| ⩾ q|A|, and
(ii) there are no isolated vertices in B.

Then there exist nonempty vertex sets X ⊆ A and Y ⊆ B such that
• there is a q-expansion of X into Y, and
• no vertex in Y has a neighbor outside X, that is, N(Y) ⊆ X.

Furthermore, the sets X and Y can be found in time polynomial in the
size of G.



q-Expansion Lemma

Let q ⩾ 1 be a positive integer and G be a bipartite graph with vertex
bipartition (A,B) such that

(i) |B| ⩾ q|A|, and
(ii) there are no isolated vertices in B.

Then there exist nonempty vertex sets X ⊆ A and Y ⊆ B such that
• there is a q-expansion of X into Y, and
• no vertex in Y has a neighbor outside X, that is, N(Y) ⊆ X.

Furthermore, the sets X and Y can be found in time polynomial in the
size of G.

We will use this lemma with q = 2.



Part 3
2-Expansions and FVS



• For Vertex Cover – if a vertex has degree
k+ 1 then we must have it in the solution.



• For Vertex Cover – if a vertex has degree
k+ 1 then we must have it in the solution.

What would be the analogous rule for Feedback
vertex Set.



• For Vertex Cover – if a vertex has degree
k+ 1 then we must have it in the solution.

What would be the analogous rule for Feedback
vertex Set.
For Vertex Cover – wanted to hit edges and
for Feedback vertex Set – want to hit cycles..



Flower

v

k + 1− vertex disjoint

cycles passing through it



Flower Rule.

Reduction.FVS
If there is a k+ 1-flower passing through a vertex
v then (G \ {v}, k− 1).



In what follows, given a high degree
vertex (more than some kO(1)) in

polynomial time either we will find a
k+ 1-flower or find ways to delete

some edges from the graph.



Ingredients



Ingredients

a high-degree vertex, v



Ingredients

a high-degree vertex, v

a small hitting set,
sans v



Given a high-degree vertex v, finding a small
feedback vertex set that does not contain v.

Any feedback vertex set whose size is a
polynomial function of k.

When the largest collection of vertex disjoint
paths from N(v) to N(v) is small.



Given a high-degree vertex v, finding a small
feedback vertex set that does not contain v.

A subset whose removal makes the graph acyclic.

When the largest collection of vertex disjoint
paths from N(v) to N(v) is small.



Given a high-degree vertex v, finding a small
feedback vertex set that does not contain v.

A polynomial function of k.

When the largest collection of vertex disjoint
paths from N(v) to N(v) is small.



Given a high-degree vertex v, finding a small
feedback vertex set that does not contain v.

When the largest collection of vertex disjoint
paths from N(v) to N(v) is small.



Given a high-degree vertex v, finding a small
feedback vertex set that does not contain v.

Find an approximate feedback vertex set T .

When the largest collection of vertex disjoint
paths from N(v) to N(v) is small.



Given a high-degree vertex v, finding a small
feedback vertex set that does not contain v.

If T does not contain v, we are done.

When the largest collection of vertex disjoint
paths from N(v) to N(v) is small.



Given a high-degree vertex v, finding a small
feedback vertex set that does not contain v.

Else: v ∈ T . Delete T \ v from G.

When the largest collection of vertex disjoint
paths from N(v) to N(v) is small.



Given a high-degree vertex v, finding a small
feedback vertex set that does not contain v.

The only remaining cycles pass through v.

When the largest collection of vertex disjoint
paths from N(v) to N(v) is small.



Given a high-degree vertex v, finding a small
feedback vertex set that does not contain v.

Find an optimal cut set for paths from N(v) to
N(v).

When the largest collection of vertex disjoint
paths from N(v) to N(v) is small.



Given a high-degree vertex v, finding a small
feedback vertex set that does not contain v.

Why is this cut set small enough?

When the largest collection of vertex disjoint
paths from N(v) to N(v) is small.
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Given a high-degree vertex v, finding a small
feedback vertex set that does not contain v.

When is this cut set small enough?

When the largest collection of vertex disjoint
paths from N(v) to N(v) is not small...



Given a high-degree vertex v, finding a small
feedback vertex set that does not contain v.

When is this cut set small enough?

When the largest collection of vertex disjoint
paths from N(v) to N(v) is not small... we get a
reduction rule.



Given a high-degree vertex v, finding a small
feedback vertex set that does not contain v.

When is this cut set small enough?

More than k vertex-disjoint paths from N(v) to
N(v)→ v belongs to any feedback vertex set
(k+ 1-flower) of size at most k.



Given a high-degree vertex v, finding a small
feedback vertex set that does not contain v.

When is this cut set small enough?

So either v “forced”, or we have feedback vertex
set of suitable size.
Notice that we need to arrive at either situation
in “polynomial time”.



Approximate fvs

• There is a factor 2 approximation algorithm
for Feedback Vertex Set. So use this to
get T . If |T | > 2k return no-instance. Else,
we have the desired T .

•



Approximate fvs

• There is a factor 2 approximation algorithm
for Feedback Vertex Set. So use this to
get T . If |T | > 2k return no-instance. Else,
we have the desired T .

• We have seen if G has minimum degree 3,
then any fvs of size at most k contains one
among the first 3k vertices of highest degree.
Use this to get T of size 3k2 or return
no-instance.



fvs without v when v ∈ T .

• Zv = T \ {v}+W(something more).



fvs without v when v ∈ T .

• Zv = T \ {v}+W(something more).

Forest

v



fvs without v when v ∈ T .

Forest

v

W will be a fvs for Forest + v.



• Check whether there is a k+ 1-flower
containing v in Forest + v (if yes then we
have reduction rule). (How to find?)

•
•
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Forest + v of size at most 2k.
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• Check whether there is a k+ 1-flower
containing v in Forest + v (if yes then we
have reduction rule). (How to find?)

• Else, we can show that there is fvs for
Forest + v of size at most 2k.

• Prove it for yourself a bound of O(k) – this is
not very hard :).



Book – Gallai Theorem

Theorem (Gallai)
Given a simple graph G, a set T ⊆ V(G) and an
integer s, one can in polynomial time find either

..1 a family of s+ 1 pairwise vertex-disjoint
T -paths, or

..2 a set B of at most 2s vertices, such that in
G \ B no connected component contains more
than one vertex of T .



What did we show.

• For every vertex v either there is a
k+ 1-flower passing through v or there is a
Zv of size at most 4k that does not include v

and is a fvs of G.
•
•



What did we show.
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• In the first case we apply Flower Rule.
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What did we show.

• For every vertex v either there is a
k+ 1-flower passing through v or there is a
Zv of size at most 4k that does not include v

and is a fvs of G.
• In the first case we apply Flower Rule.
• Assume that the first case does not happen,

so we have Zv of size at most 4k for every
vertex v ∈ V(G).



forest

hitting set that excludes v

v



forest

hitting set that excludes v

v



Focussing on the green Part

Consider the connected components
of V(G) \ (Zv ∪ {v}).



forest

hitting set that excludes v

v



Could v have two neighbor in a
connected components of

V(G) \ (Zv ∪ {v})?



forest

hitting set that excludes v

v



forest

hitting set that excludes v

v



forest

hitting set that excludes v

v



There could be components in
V(G) \ (Zv ∪ {v}) that do not see

any neighbor of v. Important, for us
is that any component contains at
most one neighbor of v and we will

focus on them.



forest

hitting set that excludes v

v



To bound the degree of v or to delete
an edge incident to v we only focus
on those components that contain
some (exactly one) neighbor of v.



forest

hitting set that excludes v

v



To apply 2-expansion lemma we
need a bipartite graph. In one part
(say B) we will have a vertex for

every component in V(G) \ (Zv∪ {v})
that contains a neighbor of v.



forest

hitting set that excludes v

v



To apply 2-expansion lemma we
need a bipartite graph. In one part
(say B) we will have a vertex for

every component in V(G) \ (Zv∪ {v})
that contains a neighbor of v. The

other part A will be Zv.



forest

hitting set that excludes v

v



• So we have A and B. We put an edge
between a vertex x in A and a vertex w in B,
if x is adjacent to some vertex in the
component represented by the vertex w.
Essentially, we have obtained this bipartite
graph by contracting the components.

•



• So we have A and B. We put an edge
between a vertex x in A and a vertex w in B,
if x is adjacent to some vertex in the
component represented by the vertex w.
Essentially, we have obtained this bipartite
graph by contracting the components.

• If |B| < 2|A| ⩽ 8k then v already has its
degree bounded by 8k. So assume that

|B| > 2|A|



Now by expansion lemma (applied with q = 2 )
we have that there exist nonempty vertex sets
X ⊆ A and Y ⊆ B such that

• there is a 2-expansion of X into Y, and
• no vertex in Y has a neighbor outside X, that

is, N(Y) ⊆ X.



forest

hitting set that excludes v

v

by 2-expansion 

lemma:



forest

hitting set that excludes v

v

by 2-expansion 

lemma:



So the reduction ruleis:



forest

hitting set that excludes v

v

by 2-expansion 

lemma:



... and add the
following edges if

already not present.



forest

hitting set that excludes v

v

by 2-expansion 

lemma:



Let us argue correctness!



The Forward Direction

FVS ⩽ k in G ⇒ FVS ⩽ k in H



The Forward Direction

FVS ⩽ k in G ⇒ FVS ⩽ k in H



forest

hitting set that excludes v

v

by 2-expansion 

lemma:



If G has a FVS that either contains v or all of X,
we are in good shape.



Consider now a FVS that:
• Does not contain v,
• and omits at least one vertex of X.









Notice that this does not lead to a larger FVS:

For every vertex v in X that a FVS of G leaves
out,

it must pick a vertex u that kills no more than all
of X.
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Notice that this does not lead to a larger FVS:

For every vertex v in X that a FVS of G leaves
out,

it must pick a vertex u that kills no more than all
of X.
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The Reverse Direction

FVS ⩽ k in G ⇐ FVS ⩽ k in H

If FVS in H contains v then the same works for G

also as G \ {v} is isomorphic to H \ {v}. So assume
that FVS in H does not contain v.



The Reverse Direction

FVS ⩽ k in G ⇐ FVS ⩽ k in H

If FVS in H contains v then the same works for G

also as G \ {v} is isomorphic to H \ {v}. So assume
that FVS in H does not contain v.



forest

hitting set that excludes v

v

by 2-expansion 

lemma:



Let W be a FVS of H, the Only Danger for W to
be a FVS of G:

Cycles that:
• pass through v,
• non-neighbors of v in H (neighbors in G,

however)
• and do not pass through X.





Let W be a FVS of H, the Only Danger for W to
be a FVS of G:

Cycles that:
• pass through v,
• non-neighbors of v in H (neighbors in G,

however)
• and do not pass through X.

However recall that N(Y) ⊆ X.





Wrapping Up

• A priori it is not obvious that previous
Reduction Rule actually makes some
simplification of the graph, since it
substitutes some set of edges with some other
set of double edges!

•



Wrapping Up

• A priori it is not obvious that previous
Reduction Rule actually makes some
simplification of the graph, since it
substitutes some set of edges with some other
set of double edges!

• We need to formally prove that the reduction
rules cannot be applied infinitely, or
superpolynomially many times.



Wrapping Up

We shall do this using a potential method: we
define a measure of the instance at hand, which is

•
•
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Wrapping Up

We shall do this using a potential method: we
define a measure of the instance at hand, which is

• never negative,
• initially it is polynomially bounded by the

size of the instance, and
• strictly decreases whenever any of the

reductions is applied.



Wrapping Up

For an instance (G, k), let E¬2(G) be the set of all
the loops and edges of G except for edges of
multiplicity 2. Define

φ(G) = 2|V(G)|+ |E¬2(G)|.



Wrapping Up

For an instance (G, k), let E¬2(G) be the set of all
the loops and edges of G except for edges of
multiplicity 2. Define

φ(G) = 2|V(G)|+ |E¬2(G)|.

Potential φ strictly decreases whenever applying
some reduction rule (of course, providing that the
rule did not terminate the algorithm) – need to
show.



Wrapping Up

For an instance (G, k), let E¬2(G) be the set of all
the loops and edges of G except for edges of
multiplicity 2. Define

φ(G) = 2|V(G)|+ |E¬2(G)|.

For the last rule we remove a nonempty set of
single edges from the graph, thus decreasing
|E¬2(G)|, while the introduced double edges are
not counted in this summand.



Wrapping Up
For an instance (G, k), let E¬2(G) be the set of all
the loops and edges of G except for edges of
multiplicity 2. Define

φ(G) = 2|V(G)|+ |E¬2(G)|.

For the last rule we remove a nonempty set of
single edges from the graph, thus decreasing
|E¬2(G)|, while the introduced double edges are
not counted in this summand.
Danger: One needs to be careful with other rules
though!



Final Result

Theorem
Feedback Vertex Set admits a kernel with at
most O(k2) vertices and O(k2) edges.



Final Result

Theorem
Feedback Vertex Set admits a kernel with at
most O(k2) vertices and O(k2) edges.

We will probably see that this is optimal under
some natural complexity theory assumptions.



Thanks.


