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The Party Problem

Party Problem
Problem: Invite some colleagues for a party.

Maximize: The total fun factor of the invited people.

Constraint: Everyone should be having fun.

No fun with your direct boss!

I Input: A tree with weights

on the vertices.

I Task: Find an independent

set of maximum weight.
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Solving the Party Problem
Dynamic programming paradigm: We solve a large number of

subproblems that depend on each other. The answer is a single

subproblem.

Tv: the subtree rooted at v.

A[v]: max. weight of an independent set in Tv
B[v]: max. weight of an independent set in Tv that does

not contain v

Goal: determine A[r] for the root r.

Method:

Assume v1, . . . , vk are the children of v. Use the recurrence

relations

B[v] =
∑k

i=1A[vi]

A[v] = max{B[v] , w(v) +
∑k

i=1B[vi]}

The values A[v] and B[v] can be calculated in a bottom-up order

(the leaves are trivial).
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What is a tree-like graph?
Generalizing trees

How could we define that a graph is “treelike”?
1 Number of cycles is bounded.

good bad bad bad
2 Removing a bounded number of vertices makes it acyclic.

good good bad bad
3 Bounded-size parts connected in a tree-like way.

bad bad good good
17



Less ambitious question: What is a path-like graph?

pathlike

path
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Useful point of view: generating sequence

For an integer k, we generate graph G (if we can) using the

following operations:

1. init: V := ∅, E := ∅, X := ∅
2. introduce− vertex(v) for v /∈ V :

V := V ∪ {v}
X := X ∪ {v}

3. forget(v) for v ∈ X:

X := X \ {v}
4. introduce− edge(uv) for u, v ∈ X:

E := E ∪ {uv}
A sequence of operations must always satisfy |X| ≤ k.
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Running example

Independent Set

Input: A graph G and an integer k.

Question: Is there a subset S of V (G) of size k such

that there are no edges between vertices in S?

Or find the size of a maximum independent set of G.



Idea

I Follow a generating sequence the graph was constructed

I Exploit the fact that the set of special vertices X is small to

compute MIS.



t-boundaried graphs
A k-boundaried graph is a graph with n vertices and at most k

special vertices X ⊆ {x1, . . . , xk}. X is called the boundary of G.

Special vertices are ∂(Vj).

X

x1

x2

x3



Dynamic table: Generalization of Party Argument
For every subset S of the boundary X, T [S] is the size of the

largest independent set I such that I ∩X = S, or −∞ if no such

set exists.

X
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x3



Dynamic table
The size of the largest independent set I such that I ∩X = S, or

−∞ if no such set exists.
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Dynamic table
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Dynamic table
The size of the largest independent set I such that I ∩X = S, or

−∞ if no such set exists.

X

x1

x2

x3

T [∅] 4

T [x1] 4

T [x2] 3

T [x3] 3

T [x1, x2] −∞
T [x1, x3] 3

T [x2, x3] 3

T [x1, x2, x3] −∞



Introduce
Add a vertex xi /∈ X to X. The vertex xi can have arbitrary

neighbours in X but no other neighbours.
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Introduce
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neighbours in X but no other neighbours.
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Introduce: Updating table T

Suppose xi (here x4) was introduced into X, with closed

neighbourhood N [xi]. We update the table T .

T [S] =


T [S] if xi /∈ S,
−∞ if xi ∈ S and S ∩N(xi) 6= ∅,
1 + T [S \ xi] if xi ∈ S and S ∩N(xi) = ∅.

Update time: 2k · nO(1) [There are tricks to turn it into 2k · kO(1)]
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Forget operation
Pick a vertex xi ∈ X and forget that it is special (it loses the name

xi and becomes “nameless”).
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Forget operation
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Forget operation
Pick a vertex xi ∈ X and forget that it is special (it loses the name

xi and becomes “nameless”).

X

x1

x2

x3



Forget: Updating table T

Forgetting xi (here x4).

T [S] = max
{
T [S], T [S ∪ xi]

}
Update time: 2kkO(1)



Two questions:

Two important questions are not answered so far

I How to find a good generating sequence?

I While the pathwidth of a tree can be arbitrarily large, the

dynamic programs we used on trees and on graphs with small

pathwidth are quite similar. Is it possible to combine both

approaches?
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Two questions:

Two important questions are not answered so far

I How to find a good generating sequence?

I While the pathwidth of a tree can be arbitrarily large, the

dynamic programs we used on trees and on graphs with small

pathwidth are quite similar. Is it possible to combine both

approaches?

In what follow we provide answers to both questions. The answer

to the questions will be given by making use of tree

decompositions and treewidth.



Courcelle's 
THeorem

Trees and separators
Dynamic 

programming

Computing treewidth
Applications on 
planar graphs Irrelevant vertex 

technique

Beyond treewidth

Path and tree 
decompositions



Pathwidth (canonical definition)
A path decomposition of graph G is a sequence of bags

Xi ⊆ V (G), i ∈ {1, . . . , , r},

(X1, X2, . . . , Xr)

such that

(P1)
⋃

1≤i≤rXi = V (G).

(P2) For every vw ∈ E(G), there exists i ∈ {1, . . . , , r} such that

bag Xi contains both v and w.

(P3) For every v ∈ V (G), let i be the minimum and j be the

maximum indices of the bags containing v. Then for every k,

i ≤ k ≤ j, we have v ∈ Xk. In other words, the indices of the

bags containing v form an interval.

The width of a path decomposition (X1, X2, . . . , Xr) is

max1≤i≤r |Xi| − 1. The pathwidth of a graph G is the minimum

width of a path decomposition of G.
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maximum indices of the bags containing v. Then for every k,

i ≤ k ≤ j, we have v ∈ Xk. In other words, the indices of the

bags containing v form an interval.

The width of a path decomposition (X1, X2, . . . , Xr) is

max1≤i≤r |Xi| − 1. The pathwidth of a graph G is the minimum

width of a path decomposition of G.
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Figure : A graph and its path-decompositions.



Nice Decompositions

It is more convenient to work with nice decompositions.

A path decomposition (X1, X2, . . . , Xr) of a graph G is nice if

I |X1| = |Xr| = 1, and

I for every i ∈ {1, 2, . . . , r − 1} there is a vertex v of G such

that either Xi+1 = Xi ∪ {v}, or Xi+1 = Xi \ {v}.



Nice Decompositions

It is more convenient to work with nice decompositions.

A path decomposition (X1, X2, . . . , Xr) of a graph G is nice if

I |X1| = |Xr| = 1, and

I for every i ∈ {1, 2, . . . , r − 1} there is a vertex v of G such

that either Xi+1 = Xi ∪ {v}, or Xi+1 = Xi \ {v}.

Thus bags of a nice path decomposition are of the two types. Bags

of the first type are of the form Xi+1 = Xi ∪ {v} and are introduce

nodes. Bags of the form Xi+1 = Xi \ {v} are forget nodes.
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Figure : A graph, its path and nice path decompositions.

Exercise: Construct an algorithm that for a given path

decomposition of width k constructs a nice path decomposition of

width k in time O(k2n).



Equivalence of definitions



What about separators?

Lemma
Let (X1, X2, . . . , Xr) be a path decomposition. Then for every

j ∈ {1, . . . , r − 1}, ∂(X1 ∪X2 · · · ∪Xj) ⊆ Xj ∩Xj+1. In other

words, Xj ∩Xj+1 separates X1 ∪X2 · · · ∪Xj from the other

vertices of G.

Proof.



DP on graphs of small pathwidth

I The pathwidth(pw(G)) of G is the minimum boundary size

needed to construct G from the empty graph using introduce

and forget operations... -1

I Have seen: Maximum Independent Set can be solved in

2kkO(1)n time if a path decomposition of width k is given as

input.



Tractable problems on graphs of pathwidth p

Independent Set O(2ppn)

Dominating Set O(3ppn)

q-Coloring O(qppn)

Max Cut O(2ppn)

Odd Cycle Transversal O(3ppn)

Hamiltonian Cycle O(pppn)

Partition into Triangles O(2ppn)



Tightness

We will see later that up to SETH these bounds are tight

Independent Set O(2kkn)
Dominating Set O(3kkn)
q-Coloring O(qkkn)
Max Cut O(2kkn)
Odd Cycle Transversal O(3kkn)
Partition into Triangles O(2kkn)



Pathwidth

I Introduced in the 80’s as a part of Robertson and Seymour’s

Graph Minors project.

I (Bodlaender and Kloks 96) Graphs of pathwidth k can be

recognized in f(k)n time — FPT algorithm.



Another Operation: Join Operation

Given two t-boundaried graphs G1 and G2, the join operation

glues them together at the boundaries.
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Another Operation: Join Operation

Given two t-boundaried graphs G1 and G2, the join operation

glues them together at the boundaries.
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Joining G1 and G2: Updating the Table T for Maximum

Independent Set

Have a table T1 for G1 and T2 for G2, want to compute the table

T for their join.

T [S] = T1[S] + T2[S]− |S|

Update time: O(2k



Treewidth

I The treewidth(tw(G)) of G is the minimum boundary size

needed to construct G from the empty graph using introduce,

forget and join operations... -1

I Have seen: Independent Set can be solved in 2kkO(1)n

time if a construction of G with k labels is given as input.



Tree Decomposition: canonical definition

A tree decomposition of a graph G is a pair T = (T, χ), where T

is a tree and mapping χ assigns to every node t of T a vertex

subset Xt (called a bag) such that

(T1)
⋃

t∈V (T )Xt = V (G).

(T2) For every vw ∈ E(G), there exists a node t of T

such that bag χ(t) = Xt contains both v and w.

(T3) For every v ∈ V (G), the set χ−1(v), i.e. the set of

nodes Tv = {t ∈ V (T ) | v ∈ Xt} forms a connected

subgraph (subtree) of T .

The width of tree decomposition T = (T, χ) equals

maxt∈V (T ) |Xt| − 1, i.e the maximum size of it s bag minus one.

The treewidth of a graph G is the minimum width of a tree

decomposition of G.
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The treewidth of a graph G is the minimum width of a tree

decomposition of G.



Treewidth Applications

I Graph Minors

I Parameterized Algorithms

I Exact Algorithms

I Approximation Schemes

I Kernelization

I Databases

I CSP’s

I Bayesian Networks

I AI

I ...



Exercise: What are the widths of these graphs?
Generalizing trees

How could we define that a graph is “treelike”?
1 Number of cycles is bounded.

good bad bad bad
2 Removing a bounded number of vertices makes it acyclic.

good good bad bad
3 Bounded-size parts connected in a tree-like way.

bad bad good good
17



Treewidth

I Discovered and rediscovered many times: Halin 1976, Bertelé

and Brioschi, 1972

I In the 80’s as a part of Robertson and Seymour’s Graph

Minors project.

I Arnborg and Proskurowski: algorithms



Separation Property

For every pair of adjacent nodes of the path of a path

decomposition, the intersection of the corresponding bags is a

separator.

Treewidth also has similar properties—every bag is a separator.
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decomposition, the intersection of the corresponding bags is a
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Treewidth also has similar properties—every bag is a separator.



Trees and separators

Courcelle's 
THeorem

Computing treewidth
Applications on 
planar graphs Irrelevant vertex 

technique

Beyond treewidth

Path and tree decompositions

Dynamic programming



Reminder: Solving the Party Problem on trees

Tv: the subtree rooted at v.

A[v]: max. weight of an independent set in Tv
B[v]: max. weight of an independent set in Tv that does

not contain v

Goal: determine A[r] for the root r.

Method:

Assume v1, . . . , vk are the children of v. Use the recurrence

relations

B[v] =
∑k

i=1A[vi]

A[v] = max{B[v] , w(v) +
∑k

i=1B[vi]}

The values A[v] and B[v] can be calculated in a bottom-up order

(the leaves are trivial).



Weighted Max Independent Set

and tree decompositions

Fact: Given a tree decomposition of width k, Weighted Max

Independent Set can be solved in time O(2kkO(1) · n).

Xt: vertices appearing in node t.

Vt: vertices appearing in the subtree

rooted at t.

Generalizing our solution for trees:

Instead of computing two values A[v],

B[v] for each vertex of the graph, we

compute 2|Xt| ≤ 2k+1 values for each

bag Xt.

WEIGHTED MAX INDEPENDENT SET

and tree decompositions

Fact: Given a tree decomposition of width w , WEIGHTED MAX INDEPENDENT SET can

be solved in time O(2w · n).

Bx : vertices appearing in node x .

Vx : vertices appearing in the subtree rooted at x .

Generalizing our solution for trees:

Instead of computing 2 values A[v ], B[v ] for each

vertex of the graph, we compute 2|Bx | ≤ 2w+1

values for each bag Bx .

M[x , S]: the maximum weight of an independent

set I ⊆ Vx with I ∩ Bx = S .

b, e, f g , h

c, d , f

b, c, f d , f , g

a, b, c

∅ =? bc =?
b =? cf =?
c =? bf =?
f =? bcf =?

How to determine M[x , S ] if all the values are known for
the children of x?

Fixed Parameter Algorithms – p.11/48
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How to determine c[t, S] if all the values are known for the children

of t?



Nice tree decompositions
Definition: A rooted tree decomposition is nice if every node t is

one of the following 4 types:

I Leaf: no children, |Xt| = 1

I Introduce: one child q, Xt = Xq ∪ {v} for some vertex v

I Forget: one child q, Xt = Xq \ {v} for some vertex v

I Join: two children t1, t2 with Xt = Xt1 = Xt2

Nice tree decompositions

Definition: A rooted tree decomposition is nice if every node x is one of the following

4 types:

Leaf: no children, |Bx | = 1

Introduce: 1 child y , Bx = By ∪ {v} for some vertex v

Forget: 1 child y , Bx = By \ {v} for some vertex v

Join: 2 children y1, y2 with Bx = By1 = By2

Leaf Forget JoinIntroduce

u, v , w

u, v , w u, w

u, w u, v , w

u, v , w

u, v , w

v

Fact: A tree decomposition of width w and n nodes can be turned into a nice tree

decomposition of width w and O(wn) nodes in time O(w 2n).
Fixed Parameter Algorithms – p.12/48

Fact: A tree decomposition of width k and n nodes can be turned

into a nice tree decomposition of width k and O(kn) nodes in time

O(k2n).
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into a nice tree decomposition of width k and O(kn) nodes in time

O(k2n).



Weighted Max Independent Set

and nice tree decompositions

I Leaf: no children, |Xt| = 1

Trivial!

I Introduce: one child q, Xt = Xq ∪ {v} for some vertex v

c[t, S] =


c[q, S] if v 6∈ S,
c[q, S \ {v}] + w(v) if v ∈ S but v has no neighbor in S,

−∞ if S contains v and its neighbor.

I Forget: one child y, Xt = Xq \ {v} for some vertex v

c[t, S] = max{c[q, S], c[q, S ∪ {v}]}

I Join: two children t1, t2 with Xt = Xt1 = Xt2

c[t, S] = c[t1, S] + c[t2, S]− w(S)

Nice tree decompositions

Definition: A rooted tree decomposition is nice if every node x is one of the following

4 types:

Leaf: no children, |Bx | = 1

Introduce: 1 child y , Bx = By ∪ {v} for some vertex v

Forget: 1 child y , Bx = By \ {v} for some vertex v

Join: 2 children y1, y2 with Bx = By1 = By2

Leaf Forget JoinIntroduce

u, v , w

u, v , w u, w

u, w u, v , w

u, v , w

u, v , w

v

Fact: A tree decomposition of width w and n nodes can be turned into a nice tree

decomposition of width w and O(wn) nodes in time O(w 2n).
Fixed Parameter Algorithms – p.12/48

There are at most 2k+1 · n subproblems c[t, S] and each

subproblem can be solved in O(n) time (assuming the children are

already solved). There is a trick [exercise] to reduce it to O(k). ⇒
Running time is O(2k · kO(1)n).
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Weighted Max Independent Set

and nice tree decompositions

I Forget: one child y, Xt = Xq \ {v} for some vertex v

c[t, S] = max{c[q, S], c[q, S ∪ {v}]}
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There are at most 2k+1 · n subproblems c[t, S] and each

subproblem can be solved in O(n) time (assuming the children are

already solved). There is a trick [exercise] to reduce it to O(k). ⇒
Running time is O(2k · kO(1)n).



Dominating Set

Exercise
Show how to solve the dominating set problem in 5kkO(1)n time

on graphs of treewidth k.

Each vertex can be in one of three states:

I chosen to the solution,

I not chosen, not yet dominated,

I not chosen, dominated.

But join operation is expensive. It is possible to improve to

3kkO(1)n by making use of subset convolution (later...)
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Dominating Set

Exercise
Show how to solve the dominating set problem in 5kkO(1)n time

on graphs of treewidth k.

Each vertex can be in one of three states:

I chosen to the solution,

I not chosen, not yet dominated,

I not chosen, dominated.

But join operation is expensive. It is possible to improve to

3kkO(1)n by making use of subset convolution (later...)



Steiner tree

We are given an undirected graph G and a set of vertices

K ⊆ V (G), called terminals. The goal is to find a subtree H of G

of the minimum possible size (that is, with the minimum possible

number of edges) that connects all the terminals.

Fact: Given a tree decomposition of width k, Steiner tree can

be solved in time kO(k) · n.



Treewidth DP for Steiner tree

Xt

Gt

H

Figure : Steiner tree H intersecting bag Xt and graph Gt.



Treewidth DP for Steiner tree

Idea: Construct forest F in Gt such that

Every terminal from K ∩ Vt should belong to some connected

component of F .

Encode this information by keeping, for each subset X ⊆ Xt and

each partition P of X, the minimum size of a forest F in Gt such

that

(a) K ∩ Vt ⊆ V (F ), i.e., F spans all terminals from Vt,

(b) V (F ) ∩Xt = X, and

(c) the intersections of Xt with vertex sets of connected

components of F form exactly the partition P of X.



Treewidth DP for Steiner tree

I When we introduce a new vertex or join partial solution (at

join nodes), the connected components of partial solutions

could merge and thus we need to keep track of the updated

partition into connected components.

I How to avoid cycles in join operations?

Xt

Gt2
Gt1
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join nodes), the connected components of partial solutions

could merge and thus we need to keep track of the updated

partition into connected components.

I How to avoid cycles in join operations?
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Treewidth DP for Steiner tree

I At the end, everything boils down to going to all possible

partitions of all bags, which is, roughly kk · n.

I We will see how single-exponential 2O(k) on treewidth can be

obtained later.



Treewidth DP for Steiner tree

I At the end, everything boils down to going to all possible

partitions of all bags, which is, roughly kk · n.

I We will see how single-exponential 2O(k) on treewidth can be

obtained later.



Treewidth DP

Conclusion

The main challenge for most of the problems is to understand what

information to store at nodes of the tree decomposition. Obtaining

formulas for forget, introduce and join nodes can be a tedious task,

but is usually straightforward once a precise definition of a state is

established.



Fact

Independent Set, Dominating Set, q-Coloring, Max-Cut, Odd Cycle

Transversal, Hamiltonian Cycle, Partition into Triangles, Feedback

Vertex Set, Vertex Disjoint Cycle Packing and million other

problems are FPT parameterized by the treewidth.



Meta-theorem for treewidth DP

While arguments for each of the problems are different, there are a

lot of things in common...



Coming soon...

Trees and separators Path and tree 
decompositions Dynamic 

programming

Computing treewidth
Applications on 
planar graphs Irrelevant vertex 

technique

Beyond treewidth

Courcelle's 
THeorem
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