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Outline

Goal: how to prove that some problems do not admit
polynomial kernelization algorithms?

Part 1:

Introduction of the (cross)-composition framework.
Basic examples.

Part 2:

PPT reductions.
Case study of several cross-compositions.
Weak compositions.
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Disclaimer

This will be a complexity theory lecture.

Unparameterized problems = languages over Σ = subsets of Σ?,
for a constant size alphabet Σ.

Parameterized problems are sets of pairs (x , k), where x ∈ Σ?

and k is a nonnegative integer.

Unparameterized variant: k is appended to x in unary.
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Kernelization — recap

instance of L

k

instance of L

k

instance of L

P-time

instance of L
size ≤ f (k)
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Kernelization and FPT

If a decidable problem admits a kernelization algorithm, then it
is FPT.

Any FPT problem admits a kernelization algorithm:

Let (x , k) be the input instance.
If |x | ≤ f (k), then we already have a kernel.
Otherwise f (k) · |x |c = O(|x |c+1).

Question of existence of any kernel is equivalent to being FPT.

We are interested in polynomial kernels, where f is a
polynomial.

Before 2008, no tool to classify FPT problems wrt. whether they
have polykernels or not.
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Motivating intuition

Consider the k-Path problem: verify whether the input graph
contains a simple path on k vertices.

Suppose for a moment that k-Path admits a kernel that has
always, say, at most k3 vertices.

Take t = k7 instances (G1, k), (G2, k), . . . , (Gt , k).

Let H be a disjoint union of G1,G2, . . . ,Gt . Then the answer to
(H , k) is YES if and only if the answer to any (Gi , k) is YES.

Apply kernelization to (H , k) obtaining an instance with k3

vertices, encodable in k6 bits.
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Motivating intuition

Intuition: The final number of bits is much less than the
number input instances. Most of the instances must have been
discarded completely.
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Kernelization and Compression

KERNELIZATION

k

instance of L

P-time

instance of L
size ≤ p(k)

COMPRESSION

k

instance of L

P-time
?

instance of R (any)
size ≤ p(k)

01000100
01010101
01010000
01000001

instance of R (any)
bitsize ≤ p(k)
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Kernelization and Compression

A polynomial kernelization is always a polynomial compression.

A polynomial compression can be turned into a polynomial
kernelization provided that there is a P-reduction from R to L.

For instance, when R ∈ NP and L is NP-hard.

Note: There are examples when a poly-compression is known
but a poly-kernel is not known, because it is unclear whether R
is in NP.
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OR-distillation

Let L,R be unparameterized languages.

OR-distillation of L into R

Input: Strings x1, x2, . . . , xt , each of length at most k .
Time: poly(t +

∑t
i=1 |xi |).

Output: One string y such that
(a) |y | = poly(k), and
(b) y ∈ R if and only if xi ∈ L for at least one i .
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OR-distillation on picture

t instances︷ ︸︸ ︷
≤ k≤ k≤ k≤ k≤ k≤ k≤ k≤ k≤ k

P-time

≤ poly(k)
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OR-distillation

Grocery intuition:

Suppose input instances are apples, and the OR-distillation
algorithm is a blender.
If one of the apples was rotten, then the blend must be untasty.
If the blend is much smaller than the total input fruit mass,
then it will be possible that a computationally too weak blender
will lose the rotten apple.

OR-L: language of strings x1#x2# . . .#xt such that xi ∈ L for
at least one i .

OR-distillation of L into R is a polynomial compression of OR-L
into R , where OR-L is parameterized by max |xi |.
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Backbone theorem

OR-distillation theorem Fortnow, Santhanam; STOC 2008, JCSS 2011

SAT does not admit an OR-distillation algorithm into any
language R , unless NP ⊆ coNP/poly.

Corollary

No NP-hard problem admits an OR-distillation algorithm into any
language R , unless NP ⊆ coNP/poly.
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The assumption

Assumption NP ⊆ coNP/poly may seem mysterious.

More known variant: NP 6= coNP.

Verifying proofs in P-time is not equivalent to veryfying
counterexamples in P-time.

NP ⊆ coNP/poly is strengthening of this by saying that
verifying proofs cannot be simulated by verifying
counterexamples even is we allow polynomial advice.

It is known that NP ⊆ coNP/poly implies that PH = ΣP
3 .

Not as bad as P = NP, but pretty severe.
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A glimpse into the proof

The proof is purely information-theoretical.

Intuitively, the space for possible kernels is too small to store
information about very long sequences of instances.

An algorithm in P cannot guess, which instance is more prone to
have a positive answer, so we need to store information about
all of them.

Main trick:

show that the space for kernels is so small that one can find a
linear number of representative kernels;
plug these kernels as the advice to a coNP-algorithm for SAT.

Look into the book.
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OR-composition

Let L be a parameterized language.

OR-composition algorithm for L

Input: Instances (x1, k), (x2, k), . . . , (xt , k).
Time: poly(t +

∑t
i=1 |xi |+ k).

Output: One instance (y , k?) such that
(a) k? = poly(k), and
(b) (y , k?) ∈ L iff (xi , k) ∈ L for at least one i .
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OR-composition on picture

t instances︷ ︸︸ ︷
kkkkkkkkk
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poly(k)
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OR-composition theorem

OR-composition theorem Bodlaender et al.; ICALP 2008, JCSS 2009

If a parameterized problem L admits an OR-composition algorithm,
and the unparameterized version of L is NP-hard, then L does not
admit a polynomial kernel unless NP ⊆ coNP/poly.
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Corollaries

k-Path does not admit poly-kernel, unless NP ⊆ coNP/poly.

Composition: Take disjoint union of graphs and the same
parameter.

A graph admits a k-path iff any of its connected components
does.

Same for k-Cycle; this opens a bag of results.

Today, investigating the existence of a polynomial kernel is an
immediate second goal after showing that a problem is FPT.
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Adding features

Does the proof actually exclude even polynomial compression,
not just kernelization?

Sure, we will just end up with an instance of OR-R.

Do we need to start the composition with the same language L
as we apply the compression to?

No, the composition algorithm can compose instances of any
language Q into one instance of L.

Can we add more refined bucket sorting? For instance, also by
the number of vertices in the graph?

Yes, as long as we have polynomial number of buckets.
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Adding more features

How large can t be?

Well, not larger than (|Σ|+ 1)k , as we may remove duplicates of
the input instances.

Hence, we may assume that log t = O(k),

which means that the parameter of the composed instance may
depend polynomially on both k and log t.

Observed also earlier via different arguments
(Dom, Lokshtanov, and Saurabh; ICALP 2009).
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After invention of the composition framework

A huge amount of no-poly-kernel results.

Most of the works use a subset of mentioned features.

STACS 2011: Bodlaender, Jansen, and Kratsch propose a new
formalism, dubbed cross-composition, that gathers all these
features.
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Polynomial equivalence relation

Polynomial equivalence relation

An equivalence relation R on Σ? is called a polynomial equivalence
relation if the following two conditions hold:

Checking whether two strings x , y ∈ Σ? are R-equivalent can be
done in poly(|x |+ |y |) time.

R partitions strings of length at most n into poly(n) equivalence
classes.

Examples:

partitioning with respect to the number of vertices of the graph;
or with respect to (i) the number of vertices, (ii) the number of
edges, (iii) size of the maximum matching, (iv) budget.
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Cross-composition

Cross-composition

An unparameterized problem Q cross-composes into a parameterized
problem L, if there exists a polynomial equivalence relation R and an
algorithm that, given R-equivalent strings x1, x2, . . . , xt , in time
poly

(
t +

∑t
i=1 |xi |

)
produces one instance (y , k?) such that

(y , k?) ∈ L iff xi ∈ Q for at least one i = 1, 2, . . . , t,

k? = poly (log t + maxti=1 |xi |).

Cross-composition theorem Bodlaender et al.; STACS 2011, SIDMA 2014

If some NP-hard problem Q cross-composes into L, then L does not
admit a polynomial compression into any language R , unless
NP ⊆ coNP/poly.
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Applications

Original application of Bodlaender, Jansen and Kratsch was that
of structural parameters.

In fact, cross-composition is a good framework to express also
all the previous results.

Plan for now: show a few cross-compositions and give intuition
about basic tricks.
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Application 1: Set Splitting

Set Splitting

Input: Universe U and family of subsets F ⊆ 2U

Parameter: |U |
Question: Does there exist a colouring C : U → {B,W}

such that every set X ∈ F is split, i.e.,
contains a black and a white element?

We show a cross-composition of Set Splitting into itself.

We may assume that the universes are of the same size, hence
we think of them as of one, common universe.

Assume that t is a power of 2 (by copying the instances).
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Cross-composing into Set Splitting

Input: Instances (U,F i )

Output: Instance (U∗,F∗)

Input: Instances (U,F i )

Output: Instance (U∗,F∗)

|U∗| = |U| + 2 log t + 2 |U∗| = |U| + 2 log t + 2

F∗ consists of: F∗ consists of:
1 + log t 2-element sets for pairs, 1 + log t 2-element sets for pairs,

∀X ∈ F i , two sets X∗0 , X∗1 ∀X ∈ F i , two sets X∗0 , X∗1

X∗0 : X , left special guy,

and binary encoding of i in IS

X∗1 : reverse X∗0 on IS

Take any solution C

There is exactly one index i with

monochromatic parts from IS.

(⇒): C on IS defines, which instance must be

solved in PL

(⇐): If (U,F i ) is solvable, we set IS
accordingly, and solve this instance in PL.

Remaining sets are split for free.

PLAYGROUND
joint universe U

INSTANCE SELECTOR
1 + log t pairs of vertices
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Wrap-up

Unparameterized Set Splitting cross-composes into Set
Splitting parameterized by |U |.

Unparameterized Set Splitting is NP-hard.

Hence Set Splitting parameterized by |U | does not admit a
polynomial kernel, unless NP ⊆ coNP/poly.

Main lesson:

Model the choice of the instance to be solved.
One strategy is to choose log t bits of its index on an
appropriate gadget.
Choice of the index make the instance active, while the other
instances are ‘switched off’.

Tomorrow: More combinatorial examples.
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AND-compositions

Everything we said so far would work in the same manner for
AND function instead of OR.

Problem: The proof of Fortnow and Santhanam inherently
breaks for AND.

AND-distillation theorem Drucker; FOCS 2012

SAT does not admit an AND-distillation algorithm into any language
R , unless NP ⊆ coNP/poly.

All the rest of the framework works the same
(AND-cross-compositions, etc.).

In particular, Treewidth, Pathwidth, etc. do not admit
polykernels, unless NP ⊆ coNP/poly.
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Exercises

Exercise 15.4, points 1, 2, 11, 12, 13.

Tikz faces based on a code by Raoul Kessels, http://www.texample.net/tikz/examples/emoticons/,

under Creative Commons Attribution 2.5 license (CC BY 2.5)
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