Lower bounds for polynomial kernelization
Part 1

Michat Pilipczuk

Institutt for Informatikk, Universitetet i Bergen

August 19", 2014

Michat Pilipczuk Kernelization lower bounds, part 1

QOutline

@ Goal: how to prove that some problems do not admit
polynomial kernelization algorithms?

o Part 1:

o Introduction of the (cross)-composition framework.
e Basic examples.
o Part 2:

e PPT reductions.
o Case study of several cross-compositions.
o Weak compositions.

Michat Pilipczuk Kernelization lower bounds, part 1

Disclaimer

@ This will be a complexity theory lecture.

Michat Pilipczuk Kernelization lower bounds, part 1

Disclaimer

e This will be a complexity theory lecture.

@ Unparameterized problems = languages over > = subsets of ¥L*,
for a constant size alphabet .

Michat Pilipczuk Kernelization lower bounds, part 1

Disclaimer

e This will be a complexity theory lecture.

@ Unparameterized problems = languages over ¥ = subsets of ¥*,
for a constant size alphabet .

@ Parameterized problems are sets of pairs (x, k), where x € £*
and k is a nonnegative integer.

Michat Pilipczuk Kernelization lower bounds, part 1

Disclaimer

e This will be a complexity theory lecture.

@ Unparameterized problems = languages over ¥ = subsets of ¥*,
for a constant size alphabet .

@ Parameterized problems are sets of pairs (x, k), where x € £*
and k is a nonnegative integer.

@ Unparameterized variant: k is appended to x in unary.

Michat Pilipczuk Kernelization lower bounds, part 1

Kernelization — recap

Michat Pilipczuk Kernelization lower bounds, part 1

Kernelization — recap

instance of L

Michat Pilipczuk Kernelization lower bounds, part 1

Kernelization — recap

instance of L

Michat Pilipczuk Kernelization lower bounds, part 1

Kernelization — recap

P-time

~

instance of L

Michat Pilipczuk Kernelization lower bounds, part 1

Kernelization — recap

~

P-time g

instance of L instance of L
size < f(k)

Michat Pilipczuk Kernelization lower bounds, part 1

Kernelization and FPT

o If a decidable problem admits a kernelization algorithm, then it
is FPT.

Michat Pilipczuk Kernelization lower bounds, part 1

Kernelization and FPT

o If a decidable problem admits a kernelization algorithm, then it
is FPT.

@ Any FPT problem admits a kernelization algorithm:

Michat Pilipczuk Kernelization lower bounds, part 1

Kernelization and FPT

o If a decidable problem admits a kernelization algorithm, then it
is FPT.

@ Any FPT problem admits a kernelization algorithm:
o Let (x, k) be the input instance.

Michat Pilipczuk Kernelization lower bounds, part 1

Kernelization and FPT

o If a decidable problem admits a kernelization algorithm, then it
is FPT.
@ Any FPT problem admits a kernelization algorithm:

o Let (x, k) be the input instance.
e If |x| < f(k), then we already have a kernel.

Michat Pilipczuk Kernelization lower bounds, part 1

Kernelization and FPT

o If a decidable problem admits a kernelization algorithm, then it
is FPT.
@ Any FPT problem admits a kernelization algorithm:

o Let (x, k) be the input instance.
o If |x| < f(k), then we already have a kernel.
o Otherwise f(k) - |x|¢ = O(|x|<1).

Michat Pilipczuk Kernelization lower bounds, part 1

Kernelization and FPT

o If a decidable problem admits a kernelization algorithm, then it
is FPT.
@ Any FPT problem admits a kernelization algorithm:

o Let (x, k) be the input instance.
o If |x| < f(k), then we already have a kernel.
o Otherwise f(k) - |x|¢ = O(|x|°*1).

@ Question of existence of any kernel is equivalent to being FPT.

Michat Pilipczuk Kernelization lower bounds, part 1

Kernelization and FPT

o If a decidable problem admits a kernelization algorithm, then it
is FPT.
@ Any FPT problem admits a kernelization algorithm:
o Let (x, k) be the input instance.
o If |x| < f(k), then we already have a kernel.
o Otherwise f(k) - |x|¢ = O(|x|T1).
@ Question of existence of any kernel is equivalent to being FPT.
@ We are interested in polynomial kernels, where f is a
polynomial.

Michat Pilipczuk Kernelization lower bounds, part 1

Kernelization and FPT

o If a decidable problem admits a kernelization algorithm, then it
is FPT.
@ Any FPT problem admits a kernelization algorithm:
o Let (x, k) be the input instance.
o If |x| < f(k), then we already have a kernel.
o Otherwise f(k) - |x|¢ = O(|x|T1).
@ Question of existence of any kernel is equivalent to being FPT.
@ We are interested in polynomial kernels, where f is a
polynomial.

@ Before 2008, no tool to classify FPT problems wrt. whether they
have polykernels or not.

Michat Pilipczuk Kernelization lower bounds, part 1

Motivating intuition

@ Consider the k-PATH problem: verify whether the input graph
contains a simple path on k vertices.

Michat Pilipczuk Kernelization lower bounds, part 1

Motivating intuition

@ Consider the k-PATH problem: verify whether the input graph
contains a simple path on k vertices.

@ Suppose for a moment that k-PATH admits a kernel that has
always, say, at most k> vertices.

Michat Pilipczuk Kernelization lower bounds, part 1

Motivating intuition

@ Consider the k-PATH problem: verify whether the input graph
contains a simple path on k vertices.

@ Suppose for a moment that k-PATH admits a kernel that has
always, say, at most k3 vertices.

@ Take t = k' instances (G, k), (Gy, k), ..., (G, k).

Michat Pilipczuk Kernelization lower bounds, part 1

Motivating intuition

@ Consider the k-PATH problem: verify whether the input graph
contains a simple path on k vertices.

@ Suppose for a moment that k-PATH admits a kernel that has
always, say, at most k3 vertices.

o Take t = k' instances (Gy, k), (Gy, k), ..., (G, k).

@ Let H be a disjoint union of Gy, Gy, ..., G;. Then the answer to
(H, k) is YES if and only if the answer to any (G;, k) is YES.

Michat Pilipczuk Kernelization lower bounds, part 1

Motivating intuition

@ Consider the k-PATH problem: verify whether the input graph
contains a simple path on k vertices.

@ Suppose for a moment that k-PATH admits a kernel that has
always, say, at most k3 vertices.

o Take t = k' instances (Gy, k), (Gy, k), ..., (G, k).

@ Let H be a disjoint union of G, Gy, ..., G;. Then the answer to
(H, k) is YES if and only if the answer to any (G;, k) is YES.

@ Apply kernelization to (H, k) obtaining an instance with k3
vertices, encodable in k° bits.

Michat Pilipczuk Kernelization lower bounds, part 1

Motivating intuition

@ Intuition: The final number of bits is much less than the
number input instances. Most of the instances must have been
discarded completely.

Michat Pilipczuk Kernelization lower bounds, part 1

Kernelization and Compression

Michat Pilipczuk Kernelization lower bounds, part 1

Kernelization and Compression

KERNELIZATION

P-time

A 4

instance of L instance of L

size < p(k)

Michat Pilipczuk Kernelization lower bounds, part 1

Kernelization and Compression

KERNELIZATION
P-time) g
instance of L msElaZDg%(kof L
COMPRESSION
P-time N
instance of L instangsezfp(lki)’ (any)

Michat Pilipczuk Kernelization lower bounds, part 1

Kernelization and Compression

KERNELIZATION
P-time . g
instance of L mstange(kof L
COMPRESSION
P-time , (=
4 01010000
01000001
instance of L instance of R (any)

bitsize < p(k)

Michat Pilipczuk Kernelization lower bounds, part 1

Kernelization and Compression

@ A polynomial kernelization is always a polynomial compression.

Michat Pilipczuk Kernelization lower bounds, part 1

Kernelization and Compression

@ A polynomial kernelization is always a polynomial compression.

@ A polynomial compression can be turned into a polynomial
kernelization provided that there is a P-reduction from R to L.

Michat Pilipczuk Kernelization lower bounds, part 1

Kernelization and Compression

@ A polynomial kernelization is always a polynomial compression.

@ A polynomial compression can be turned into a polynomial
kernelization provided that there is a P-reduction from R to L.

o For instance, when R € NP and L is NP-hard.

Michat Pilipczuk Kernelization lower bounds, part 1

Kernelization and Compression

@ A polynomial kernelization is always a polynomial compression.
@ A polynomial compression can be turned into a polynomial
kernelization provided that there is a P-reduction from R to L.
e For instance, when R € NP and L is NP-hard.

@ Note: There are examples when a poly-compression is known
but a poly-kernel is not known, because it is unclear whether R
isin NP.

Michat Pilipczuk Kernelization lower bounds, part 1

OR-distillation

@ Let L, R be unparameterized languages.

Michat Pilipczuk Kernelization lower bounds, part 1

OR-distillation

@ Let L, R be unparameterized languages.

OR-distillation of L into R
Input: Strings x1, X2, . . ., Xz, each of length at most k.
Time: poly(t + >, [xl).
Output: One string y such that

(a) |yl = poly(k), and
(b) y € R if and only if x; € L for at least one /.

Michat Pilipczuk Kernelization lower bounds, part 1

OR-distillation on picture

Michat Pilipczuk Kernelization lower bounds, part 1

OR-distillation on picture

t instances
7\

e ~N

<k <k <k <k <k <k <k <k <k

Michat Pilipczuk Kernelization lower bounds, part 1

OR-distillation on picture

t instances

Michat Pilipczuk Kernelization lower bounds, part 1

OR-distillation on picture

t instances
7\

< poly(k)

Michat Pilipczuk Kernelization lower bounds, part 1

OR-distillation

e Grocery intuition:

Michat Pilipczuk Kernelization lower bounds, part 1

OR-distillation

e Grocery intuition:

e Suppose input instances are apples, and the OR-distillation
algorithm is a blender.

Michat Pilipczuk Kernelization lower bounds, part 1

OR-distillation

e Grocery intuition:
e Suppose input instances are apples, and the OR-distillation
algorithm is a blender.
o If one of the apples was rotten, then the blend must be untasty.

Michat Pilipczuk Kernelization lower bounds, part 1

OR-distillation

e Grocery intuition:
e Suppose input instances are apples, and the OR-distillation
algorithm is a blender.
e If one of the apples was rotten, then the blend must be untasty.
o If the blend is much smaller than the total input fruit mass,
then it will be possible that a computationally too weak blender
will lose the rotten apple.

Michat Pilipczuk Kernelization lower bounds, part 1

OR-distillation

e Grocery intuition:
e Suppose input instances are apples, and the OR-distillation
algorithm is a blender.
e If one of the apples was rotten, then the blend must be untasty.
o If the blend is much smaller than the total input fruit mass,
then it will be possible that a computationally too weak blender
will lose the rotten apple.

@ OR-L: language of strings xy#xo# . . . #x; such that x; € L for
at least one /.

Michat Pilipczuk Kernelization lower bounds, part 1

OR-distillation

e Grocery intuition:
e Suppose input instances are apples, and the OR-distillation
algorithm is a blender.
e If one of the apples was rotten, then the blend must be untasty.
o If the blend is much smaller than the total input fruit mass,
then it will be possible that a computationally too weak blender
will lose the rotten apple.

@ OR-L: language of strings xy#xo# . . . #x; such that x; € L for
at least one i.

@ OR-distillation of L into R is a polynomial compression of OR-L
into R, where OR-L is parameterized by max |x;|.

Michat Pilipczuk Kernelization lower bounds, part 1

Backbone theorem

OR-distillation theorem Fortnow, Santhanam; STOC 2008, JCSS 2011

SAT does not admit an OR-distillation algorithm into any
language R, unless NP C coNP /poly.

Michat Pilipczuk Kernelization lower bounds, part 1

Backbone theorem

OR-distillation theorem Fortnow, Santhanam; STOC 2008, JCSS 2011

SAT does not admit an OR-distillation algorithm into any
language R, unless NP C coNP /poly.

No NP-hard problem admits an OR-distillation algorithm into any
language R, unless NP C coNP /poly.

Michat Pilipczuk Kernelization lower bounds, part 1

The assumption

@ Assumption NP C coNP /poly may seem mysterious.

Michat Pilipczuk Kernelization lower bounds, part 1

The assumption

@ Assumption NP C coNP /poly may seem mysterious.
@ More known variant: NP = coNP.

Michat Pilipczuk Kernelization lower bounds, part 1

The assumption

@ Assumption NP C coNP /poly may seem mysterious.
@ More known variant: NP = coNP.

o Verifying proofs in P-time is not equivalent to veryfying
counterexamples in P-time.

Michat Pilipczuk Kernelization lower bounds, part 1

The assumption

@ Assumption NP C coNP /poly may seem mysterious.
@ More known variant: NP = coNP.

e Verifying proofs in P-time is not equivalent to veryfying
counterexamples in P-time.

@ NP C coNP/poly is strengthening of this by saying that
verifying proofs cannot be simulated by verifying
counterexamples even is we allow polynomial advice.

Michat Pilipczuk Kernelization lower bounds, part 1

The assumption

@ Assumption NP C coNP /poly may seem mysterious.
@ More known variant: NP = coNP.

e Verifying proofs in P-time is not equivalent to veryfying
counterexamples in P-time.

@ NP C coNP/poly is strengthening of this by saying that
verifying proofs cannot be simulated by verifying
counterexamples even is we allow polynomial advice.

@ It is known that NP C coNP /poly implies that PH = ¥}

Michat Pilipczuk Kernelization lower bounds, part 1

The assumption

Assumption NP C coNP /poly may seem mysterious.
More known variant: NP # coNP.

e Verifying proofs in P-time is not equivalent to veryfying
counterexamples in P-time.

(]

NP C coNP/poly is strengthening of this by saying that
verifying proofs cannot be simulated by verifying
counterexamples even is we allow polynomial advice.

It is known that NP C coNP /poly implies that PH = %

Not as bad as P = NP, but pretty severe.

Michat Pilipczuk Kernelization lower bounds, part 1

A glimpse into the proof

@ The proof is purely information-theoretical.

Michat Pilipczuk Kernelization lower bounds, part 1

A glimpse into the proof

@ The proof is purely information-theoretical.

@ Intuitively, the space for possible kernels is too small to store
information about very long sequences of instances.

Michat Pilipczuk Kernelization lower bounds, part 1

A glimpse into the proof

@ The proof is purely information-theoretical.

@ Intuitively, the space for possible kernels is too small to store
information about very long sequences of instances.

@ An algorithm in P cannot guess, which instance is more prone to

have a positive answer, so we need to store information about
all of them.

Michat Pilipczuk Kernelization lower bounds, part 1

A glimpse into the proof

@ The proof is purely information-theoretical.
@ Intuitively, the space for possible kernels is too small to store
information about very long sequences of instances.

@ An algorithm in P cannot guess, which instance is more prone to
have a positive answer, so we need to store information about
all of them.

o Main trick:

Michat Pilipczuk Kernelization lower bounds, part 1

A glimpse into the proof

@ The proof is purely information-theoretical.

@ Intuitively, the space for possible kernels is too small to store
information about very long sequences of instances.

@ An algorithm in P cannot guess, which instance is more prone to
have a positive answer, so we need to store information about
all of them.

e Main trick:

e show that the space for kernels is so small that one can find a
linear number of representative kernels;

Michat Pilipczuk Kernelization lower bounds, part 1

A glimpse into the proof

@ The proof is purely information-theoretical.

@ Intuitively, the space for possible kernels is too small to store
information about very long sequences of instances.

@ An algorithm in P cannot guess, which instance is more prone to
have a positive answer, so we need to store information about
all of them.

e Main trick:

e show that the space for kernels is so small that one can find a
linear number of representative kernels;
e plug these kernels as the advice to a coNP-algorithm for SAT.

Michat Pilipczuk Kernelization lower bounds, part 1

A glimpse into the proof

@ The proof is purely information-theoretical.

@ Intuitively, the space for possible kernels is too small to store
information about very long sequences of instances.

@ An algorithm in P cannot guess, which instance is more prone to
have a positive answer, so we need to store information about
all of them.

e Main trick:

e show that the space for kernels is so small that one can find a
linear number of representative kernels;
e plug these kernels as the advice to a coNP-algorithm for SAT.

o Look into the book.

Michat Pilipczuk Kernelization lower bounds, part 1

OR-composition

@ Let L be a parameterized language.

Michat Pilipczuk Kernelization lower bounds, part 1

OR-composition

o Let L be a parameterized language.

OR-composition algorithm for L

Input: Instances (x1, k), (x2, k), ..., (X, k).
Time: poly(t + >, |xi| + k).
Output: One instance (y, k*) such that
(a) k* =poly(k), and
(b) (y,k*) € Liff (x;, k) € L for at least one i.

Michat Pilipczuk Kernelization lower bounds, part 1 16/32

OR-composition on picture

Michat Pilipczuk Kernelization lower bounds, part 1

OR-composition on picture

t instances

A\
~ ~

Michat Pilipczuk Kernelization lower bounds, part 1

OR-composition on picture

t instances

-~

Michat Pilipczuk Kernelization lower bounds, part 1

OR-composition on picture

t instances

-~

Michat Pilipczuk Kernelization lower bounds, part 1

OR-composition theorem

OR-composition theorem Bodlaender et al.; ICALP 2008, JCSS 2009

If a parameterized problem L admits an OR-composition algorithm,
and the unparameterized version of L is NP-hard, then L does not
admit a polynomial kernel unless NP C coNP /poly.

Michat Pilipczuk Kernelization lower bounds, part 1

Michat Pilipczuk rnelization lower bounds, part 1

5
<
i
o
o

Michat Pilipczuk Kernelization lower bounds, part 1

NP-hrd

NP-hrd|

NP-hrd

NP-hrd|

NP-hrd

=
i2
&
o
w
T
c
E
o
o
r
[
3
oS
c
9
5
&
XN
T
c
£
3
X

NP-hrd|

NP-hrd|

Michat Pilipczuk

NP-hrd

INP-hrd|

e

Proof
E:
S

NP-hrd

NP-hrd|

NP-hrd

NP-hrd|

NP-hrd

-
£
@

(=%

)
o
c
S
o
Qo
.
v
3
o
=
2
=]
©
A
©
c
£

NP-hrd|

NP-hrd|

Michat Pilipczuk

NP-hrd

INP-hrd|

assosdans

7

Proof
E:
S

OR-SAT

L

Michat Pilipczuk Kernelization lower bounds, part 1

OR-SAT

Michat Pilipczuk

Kernelization lower bounds, part 1

(EN

OR-SAT

OR-L

Michat Pilipczuk Kernelization lower bounds, part 1

OR-SAT

OR-L

Michat Pilipczuk Kernelization lower bounds, part 1

Corollaries

@ k-PATH does not admit poly-kernel, unless NP C coNP /poly.

Michat Pilipczuk Kernelization lower bounds, part 1

Corollaries

@ k-PATH does not admit poly-kernel, unless NP C coNP /poly.

@ Composition: Take disjoint union of graphs and the same
parameter.

Michat Pilipczuk Kernelization lower bounds, part 1

Corollaries

@ k-PATH does not admit poly-kernel, unless NP C coNP /poly.

@ Composition: Take disjoint union of graphs and the same
parameter.
o A graph admits a k-path iff any of its connected components
does.

Michat Pilipczuk Kernelization lower bounds, part 1

Corollaries

@ k-PATH does not admit poly-kernel, unless NP C coNP /poly.

@ Composition: Take disjoint union of graphs and the same
parameter.

e A graph admits a k-path iff any of its connected components
does.

@ Same for k-CYCLE; this opens a bag of results.

Michat Pilipczuk Kernelization lower bounds, part 1

Corollaries

@ k-PATH does not admit poly-kernel, unless NP C coNP /poly.

@ Composition: Take disjoint union of graphs and the same
parameter.

e A graph admits a k-path iff any of its connected components
does.
@ Same for k-CYCLE; this opens a bag of results.

@ Today, investigating the existence of a polynomial kernel is an
immediate second goal after showing that a problem is FPT.

Michat Pilipczuk Kernelization lower bounds, part 1

Adding features

@ Does the proof actually exclude even polynomial compression,
not just kernelization?

Michat Pilipczuk Kernelization lower bounds, part 1

Adding features

@ Does the proof actually exclude even polynomial compression,
not just kernelization?

e Sure, we will just end up with an instance of OR-R.

Michat Pilipczuk Kernelization lower bounds, part 1

Adding features

@ Does the proof actually exclude even polynomial compression,
not just kernelization?
e Sure, we will just end up with an instance of OR-R.

@ Do we need to start the composition with the same language L
as we apply the compression to?

Michat Pilipczuk Kernelization lower bounds, part 1

Adding features

@ Does the proof actually exclude even polynomial compression,
not just kernelization?
e Sure, we will just end up with an instance of OR-R.

@ Do we need to start the composition with the same language L
as we apply the compression to?
e No, the composition algorithm can compose instances of any
language Q into one instance of L.

Michat Pilipczuk Kernelization lower bounds, part 1

Adding features

@ Does the proof actually exclude even polynomial compression,
not just kernelization?
e Sure, we will just end up with an instance of OR-R.

@ Do we need to start the composition with the same language L
as we apply the compression to?
e No, the composition algorithm can compose instances of any
language @ into one instance of L.

@ Can we add more refined bucket sorting? For instance, also by
the number of vertices in the graph?

Michat Pilipczuk Kernelization lower bounds, part 1

Adding features

@ Does the proof actually exclude even polynomial compression,
not just kernelization?

e Sure, we will just end up with an instance of OR-R.
@ Do we need to start the composition with the same language L
as we apply the compression to?
e No, the composition algorithm can compose instances of any
language @ into one instance of L.
@ Can we add more refined bucket sorting? For instance, also by
the number of vertices in the graph?
e Yes, as long as we have polynomial number of buckets.

Michat Pilipczuk Kernelization lower bounds, part 1

Adding more features

@ How large can t be?

Michat Pilipczuk Kernelization lower bounds, part 1

Adding more features

@ How large can t be?

e Well, not larger than (|X| + 1), as we may remove duplicates of
the input instances.

Michat Pilipczuk Kernelization lower bounds, part 1

Adding more features

@ How large can t be?

@ Well, not larger than (|X| + 1), as we may remove duplicates of
the input instances.

@ Hence, we may assume that log t = O(k),

Michat Pilipczuk Kernelization lower bounds, part 1

Adding more features

@ How large can t be?

@ Well, not larger than (|X| + 1), as we may remove duplicates of
the input instances.

@ Hence, we may assume that log t = O(k),

@ which means that the parameter of the composed instance may
depend polynomially on both k and log t.

Michat Pilipczuk Kernelization lower bounds, part 1

Adding more features

@ How large can t be?

@ Well, not larger than (|X| + 1), as we may remove duplicates of
the input instances.

@ Hence, we may assume that log t = O(k),

@ which means that the parameter of the composed instance may
depend polynomially on both k and log t.

@ Observed also earlier via different arguments
(Dom, Lokshtanov, and Saurabh; ICALP 2009).

Michat Pilipczuk Kernelization lower bounds, part 1

After invention of the composition framework

@ A huge amount of no-poly-kernel results.

Michat Pilipczuk Kernelization lower bounds, part 1

After invention of the composition framework

@ A huge amount of no-poly-kernel results.

@ Most of the works use a subset of mentioned features.

Michat Pilipczuk Kernelization lower bounds, part 1

After invention of the composition framework

@ A huge amount of no-poly-kernel results.
@ Most of the works use a subset of mentioned features.

o STACS 2011: Bodlaender, Jansen, and Kratsch propose a new
formalism, dubbed cross-composition, that gathers all these
features.

Michat Pilipczuk Kernelization lower bounds, part 1

Polynomial equivalence relation

Polynomial equivalence relation
An equivalence relation R on >* is called a polynomial equivalence
relation if the following two conditions hold:
@ Checking whether two strings x,y € ¥* are R-equivalent can be
done in poly(|x| + |y|) time.
@ R partitions strings of length at most n into poly(n) equivalence
classes.

Michat Pilipczuk Kernelization lower bounds, part 1 24/32

Polynomial equivalence relation

Polynomial equivalence relation
An equivalence relation R on >* is called a polynomial equivalence
relation if the following two conditions hold:
@ Checking whether two strings x,y € ¥* are R-equivalent can be
done in poly(|x| + |y|) time.
@ R partitions strings of length at most n into poly(n) equivalence
classes.

e Examples:

Michat Pilipczuk Kernelization lower bounds, part 1

Polynomial equivalence relation

Polynomial equivalence relation
An equivalence relation R on >* is called a polynomial equivalence
relation if the following two conditions hold:
@ Checking whether two strings x,y € ¥* are R-equivalent can be
done in poly(|x| + |y|) time.
@ R partitions strings of length at most n into poly(n) equivalence
classes.

e Examples:
e partitioning with respect to the number of vertices of the graph;

Michat Pilipczuk Kernelization lower bounds, part 1

Polynomial equivalence relation

Polynomial equivalence relation
An equivalence relation R on >* is called a polynomial equivalence
relation if the following two conditions hold:
@ Checking whether two strings x,y € ¥* are R-equivalent can be
done in poly(|x| + |y|) time.
@ R partitions strings of length at most n into poly(n) equivalence
classes.

e Examples:
e partitioning with respect to the number of vertices of the graph;
e or with respect to (i) the number of vertices, (ii) the number of
edges, (iii) size of the maximum matching, (iv) budget.

Michat Pilipczuk Kernelization lower bounds, part 1

Cross-composition

Cross-composition
An unparameterized problem Q cross-composes into a parameterized
problem L, if there exists a polynomial equivalence relation R and an
algorithm that, given R-equivalent strings xi, X2, ..., X¢, in time
poly (t+ Y_i_; |xi|) produces one instance (y, k*) such that

o (y,k*) e Liff x; € Q for at least one j = 1,2,...,t,

o k* = poly (log t + maxi_; |x;|).

Michat Pilipczuk Kernelization lower bounds, part 1

Cross-composition

Cross-composition

An unparameterized problem Q cross-composes into a parameterized
problem L, if there exists a polynomial equivalence relation R and an
algorithm that, given R-equivalent strings xi, X2, ..., X¢, in time
poly (t+ Y_i_; |xi|) produces one instance (y, k*) such that

o (y,k*) e Liff x; € Q for at least one j = 1,2,...,t,

o k* = poly (log t + maxi_; |x;|).

Cross-composition theorem Bodlaender et al.; STACS 2011, SIDMA 2014

If some NP-hard problem @ cross-composes into L, then L does not
admit a polynomial compression into any language R, unless
NP C coNP /poly.

Michat Pilipczuk Kernelization lower bounds, part 1 LYY

Michat Pilipczuk rnelization lower bounds, part 1

k = max |x;|, logt= O(k)

Michat Pilipczuk Kernelization lower bounds, part 1

Proof

k = max |x;|, logt= O(k)

Michat Pilipczuk Kernelization lower bounds, part 1

Proof

k = max|x;|, logt= O(k)

..-‘ .-“ .-‘

odwoo
odwoo
odwod

Michat Pilipczuk Kernelization lower bounds, part 1

k = max |x;|,

adwd

Michat Pilipczuk

adwd

Kernelization lower bounds, part 1

adwd

k = max|x;|, logt= O(k)

© n
(o] o] o
o o o
3 3 3
o o o
o o o

~
0 (e} [a}
3 3 3
2 g e

x

&

a1

o

Michat Pilipczuk Kernelization lower bounds, part 1

k = max|x;|, logt= O(k)

© n
(o] o] o
o o o
3 3 3
o o o
o o o

~
0 (e} [a}
3 3 3
2 g e

x

&

a1

o

Michat Pilipczuk Kernelization lower bounds, part 1

Applications

@ Original application of Bodlaender, Jansen and Kratsch was that
of structural parameters.

Michat Pilipczuk Kernelization lower bounds, part 1

Applications

@ Original application of Bodlaender, Jansen and Kratsch was that
of structural parameters.

@ In fact, cross-composition is a good framework to express also
all the previous results.

Michat Pilipczuk Kernelization lower bounds, part 1

Applications

@ Original application of Bodlaender, Jansen and Kratsch was that
of structural parameters.

@ In fact, cross-composition is a good framework to express also
all the previous results.

@ Plan for now: show a few cross-compositions and give intuition
about basic tricks.

Michat Pilipczuk Kernelization lower bounds, part 1

Application 1: SET SPLITTING

SET SPLITTING

Input: Universe U and family of subsets F C 2V

Parameter: |U]

Question: Does there exist a colouring C : U — {B,W}
such that every set X € F is split, i.e.,
contains a black and a white element?

Michat Pilipczuk Kernelization lower bounds, part 1 28/32

Application 1: SET SPLITTING

SET SPLITTING

Input: Universe U and family of subsets F C 2V

Parameter: |U]

Question: Does there exist a colouring C : U — {B,W}
such that every set X € F is split, i.e.,
contains a black and a white element?

@ We show a cross-composition of SET SPLITTING into itself.

Michat Pilipczuk Kernelization lower bounds, part 1 28/32

Application 1: SET SPLITTING

SET SPLITTING

Input: Universe U and family of subsets F C 2V

Parameter: |U]

Question: Does there exist a colouring C : U — {B,W}
such that every set X € F is split, i.e.,
contains a black and a white element?

@ We show a cross-composition of SET SPLITTING into itself.

@ We may assume that the universes are of the same size, hence
we think of them as of one, common universe.

Michat Pilipczuk Kernelization lower bounds, part 1 28/32

Application 1: SET SPLITTING

SET SPLITTING
Input: Universe U and family of subsets F C 2V

Parameter: |U]

Question: Does there exist a colouring C : U — {B,W}
such that every set X € F is split, i.e.,
contains a black and a white element?

@ We show a cross-composition of SET SPLITTING into itself.

@ We may assume that the universes are of the same size, hence
we think of them as of one, common universe.

@ Assume that t is a power of 2 (by copying the instances).

Michat Pilipczuk Kernelization lower bounds, part 1

Cross-composing into SET SPLITTING

Input: Instances (U,]:i)

Output: Instance (U™, F*)

Michat Pilipczuk Kernelization lower bounds, part 1

Cross-composing into SET SPLITTING

Input: Instances (U,]:i)

Output: Instance (U™, F*)

PLAYGROUND

joint universe U

Michat Pilipczuk Kernelization lower bounds, part 1

Cross-composing into SET SPLITTING

INSTANCE SELECTOR

1 + log t pairs of vertices
Input: Instances (U, F')

Output: Instance (U™, F*)

PLAYGROUND

joint universe U

Michat Pilipczuk Kernelization lower bounds, part 1

Cross-composing into SET SPLITTING

INSTANCE SELECTOR

1 + log t pairs of vertices
Input: Instances (U, F')

Output: Instance (U™, F*)

[U*| = |U| +2log t 42

PLAYGROUND

joint universe U

Michat Pilipczuk Kernelization lower bounds, part 1

Cross-composing into SET SPLITTING

INSTANCE SELECTOR

1 + log t pairs of vertices
Input: Instances (U, F')

Output: Instance (U™, F*)

[U*| = |U| +2log t 42

F* consists of:

PLAYGROUND

joint universe U

Michat Pilipczuk Kernelization lower bounds, part 1

Cross-composing into SET SPLITTING

INSTANCE SELECTOR

1 + log t pairs of vertices
Input: Instances (U, F')

Output: Instance (U™, F*)

[U*| = |U| +2log t 42

F* consists of:
1 + log t 2-element sets for pairs,

PLAYGROUND

joint universe U

Michat Pilipczuk Kernelization lower bounds, part 1

Cross-composing into SET SPLITTING

INSTANCE SELECTOR

1 + log t pairs of vertices
Input: Instances (U, F')

Output: Instance (U™, F*)

[U*| = |U| +2log t 42

F* consists of:
1 + log t 2-element sets for pairs,

VX € F', two sets X5, X¢

PLAYGROUND

joint universe U

Michat Pilipczuk Kernelization lower bounds, part 1

Cross-composing into SET SPLITTING

INSTANCE SELECTOR

1 + log t pairs of vertices
Input: Instances (U, F')

Output: Instance (U™, F*) XO*: X, left special guy,

and binary encoding of i in IS
|U*| = |U| +2log t +2
F* consists of:

1 + log t 2-element sets for pairs,
VX € F', two sets Xg, X;*

PLAYGROUND

joint universe U

Michat Pilipczuk Kernelization lower bounds, part 1

Cross-composing into SET SPLITTING

INSTANCE SELECTOR

1 + log t pairs of vertices
Input: Instances (U, F')

Output: Instance (U™, F*) XO*: X, left special guy,

and binary encoding of i in IS

[U*| = |U| +2log t 42
Xi reverse X3 on IS

F* consists of:
1 + log t 2-element sets for pairs,

VX € F', two sets X5, X¢

PLAYGROUND

joint universe U

Michat Pilipczuk Kernelization lower bounds, part 1

Cross-composing into SET SPLITTING

INSTANCE SELECTOR

1 + log t pairs of vertices

Input: Instances (U,]:i) Take any solution C

Output: Instance (U™, F*)

[U*| = |U| +2log t 42

F* consists of:
1 + log t 2-element sets for pairs,

VX € F', two sets X5, X¢

PLAYGROUND

joint universe U

Michat Pilipczuk Kernelization lower bounds, part 1

Cross-composing into SET SPLITTING

INSTANCE SELECTOR

1 + log t pairs of vertices

Input: Instances (U,]:i) Take any solution C

Output: Instance (U™, F*)
There is exactly one index i with
monochromatic parts from IS.
[U*| = |U| +2log t 42

F* consists of:
1 + log t 2-element sets for pairs,
VX € F', two sets Xg, X;*

PLAYGROUND

joint universe U

Michat Pilipczuk Kernelization lower bounds, part 1

Cross-composing into SET SPLITTING

INSTANCE SELECTOR

1 + log t pairs of vertices

Input: Instances (U,]:i) Take any solution C

Output: Instance (U™, F*)
There is exactly one index i with
monochromatic parts from IS.
[U*| = |U| +2log t 42

F* consists of:
1 + log t 2-element sets for pairs,
VX € F', two sets Xg, X;*

PLAYGROUND

joint universe U

Michat Pilipczuk Kernelization lower bounds, part 1

Cross-composing into SET SPLITTING

INSTANCE SELECTOR

1 + log t pairs of vertices

Input: Instances (U,]:i) Take any solution C

Output: Instance (U™, F*)
There is exactly one index i with
monochromatic parts from IS.
[U*| = |U| +2log t 42

F* consists of:
1 + log t 2-element sets for pairs,
VX € F', two sets Xg, X;*

PLAYGROUND

joint universe U

Michat Pilipczuk Kernelization lower bounds, part 1

Cross-composing into SET SPLITTING

INSTANCE SELECTOR

1 + log t pairs of vertices

Input: Instances (U,]:i) Take any solution C

Output: Instance (U™, F*)
There is exactly one index i with
monochromatic parts from IS.
[U*| = |U| +2log t 42
(=): C on IS defines, which instance must be
F* consists of: solved in PL
1 + log t 2-element sets for pairs,

VX € F', two sets X5, X¢

PLAYGROUND

joint universe U

Michat Pilipczuk Kernelization lower bounds, part 1

Cross-composing into SET SPLITTING

INSTANCE SELECTOR

1 + log t pairs of vertices

Input: Instances (U,]:i) Take any solution C

Output: Instance (U™, F*)
There is exactly one index i with
monochromatic parts from IS.
[U*| = |U| +2log t 42
(=): C on IS defines, which instance must be
F* consists of: solved in PL
1 + log t 2-element sets for pairs,

VX € F', two sets X5, X¢ (<): If (U,]-'i) is solvable, we set IS
accordingly, and solve this instance in PL.
Remaining sets are split for free.

PLAYGROUND

joint universe U

Michat Pilipczuk Kernelization lower bounds, part 1

@ Unparameterized SET SPLITTING cross-composes into SET
SPLITTING parameterized by |U].

Michat Pilipczuk Kernelization lower bounds, part 1

@ Unparameterized SET SPLITTING cross-composes into SET
SPLITTING parameterized by |U]|.

@ Unparameterized SET SPLITTING is NP-hard.

Michat Pilipczuk Kernelization lower bounds, part 1

@ Unparameterized SET SPLITTING cross-composes into SET
SPLITTING parameterized by |U]|.

@ Unparameterized SET SPLITTING is NP-hard.

@ Hence SET SPLITTING parameterized by |U| does not admit a
polynomial kernel, unless NP C coNP /poly.

Michat Pilipczuk Kernelization lower bounds, part 1

@ Unparameterized SET SPLITTING cross-composes into SET
SPLITTING parameterized by |U]|.

@ Unparameterized SET SPLITTING is NP-hard.

@ Hence SET SPLITTING parameterized by |U| does not admit a
polynomial kernel, unless NP C coNP /poly.

o Main lesson:

Michat Pilipczuk Kernelization lower bounds, part 1

@ Unparameterized SET SPLITTING cross-composes into SET
SPLITTING parameterized by |U]|.

@ Unparameterized SET SPLITTING is NP-hard.
@ Hence SET SPLITTING parameterized by |U| does not admit a
polynomial kernel, unless NP C coNP /poly.
e Main lesson:
e Model the choice of the instance to be solved.

Michat Pilipczuk Kernelization lower bounds, part 1

@ Unparameterized SET SPLITTING cross-composes into SET
SPLITTING parameterized by |U]|.

@ Unparameterized SET SPLITTING is NP-hard.

@ Hence SET SPLITTING parameterized by |U| does not admit a
polynomial kernel, unless NP C coNP /poly.

e Main lesson:

e Model the choice of the instance to be solved.
o One strategy is to choose log t bits of its index on an
appropriate gadget.

Michat Pilipczuk Kernelization lower bounds, part 1

@ Unparameterized SET SPLITTING cross-composes into SET
SPLITTING parameterized by |U]|.

@ Unparameterized SET SPLITTING is NP-hard.

@ Hence SET SPLITTING parameterized by |U| does not admit a
polynomial kernel, unless NP C coNP /poly.

@ Main lesson:

e Model the choice of the instance to be solved.

o One strategy is to choose log t bits of its index on an
appropriate gadget.

o Choice of the index make the instance active, while the other
instances are ‘switched off’.

Michat Pilipczuk Kernelization lower bounds, part 1

@ Unparameterized SET SPLITTING cross-composes into SET
SPLITTING parameterized by |U]|.

@ Unparameterized SET SPLITTING is NP-hard.

@ Hence SET SPLITTING parameterized by |U| does not admit a
polynomial kernel, unless NP C coNP /poly.

@ Main lesson:
e Model the choice of the instance to be solved.
o One strategy is to choose log t bits of its index on an
appropriate gadget.
e Choice of the index make the instance active, while the other
instances are 'switched off’.

@ Tomorrow: More combinatorial examples.

Michat Pilipczuk Kernelization lower bounds, part 1

AND-compositions

@ Everything we said so far would work in the same manner for
AND function instead of OR.

Michat Pilipczuk Kernelization lower bounds, part 1

AND-compositions

o Everything we said so far would work in the same manner for
AND function instead of OR.

@ Problem: The proof of Fortnow and Santhanam inherently
breaks for AND.

Michat Pilipczuk Kernelization lower bounds, part 1

AND-compositions

o Everything we said so far would work in the same manner for
AND function instead of OR.

@ Problem: The proof of Fortnow and Santhanam inherently
breaks for AND.

AND-distillation theorem Drucker; FOCS 2012

SAT does not admit an AND-distillation algorithm into any language
R, unless NP C coNP /poly.

Michat Pilipczuk Kernelization lower bounds, part 1

AND-compositions

o Everything we said so far would work in the same manner for
AND function instead of OR.

@ Problem: The proof of Fortnow and Santhanam inherently
breaks for AND.

AND-distillation theorem Drucker; FOCS 2012

SAT does not admit an AND-distillation algorithm into any language
R, unless NP C coNP /poly.

@ All the rest of the framework works the same
(AND-cross-compositions, etc.).

Michat Pilipczuk Kernelization lower bounds, part 1

AND-compositions

o Everything we said so far would work in the same manner for
AND function instead of OR.

@ Problem: The proof of Fortnow and Santhanam inherently
breaks for AND.

AND-distillation theorem Drucker; FOCS 2012

SAT does not admit an AND-distillation algorithm into any language
R, unless NP C coNP /poly.

@ All the rest of the framework works the same
(AND-cross-compositions, etc.).

@ In particular, TREEWIDTH, PATHWIDTH, etc. do not admit
polykernels, unless NP C coNP /poly.

Michat Pilipczuk Kernelization lower bounds, part 1

Exercises

Exercise 15.4, points 1, 2, 11, 12, 13.

Tikz faces based on a code by Raoul Kessels, http://www.texample.net/tikz/examples/emoticons/,

under Creative Commons Attribution 2.5 license (CC BY 2.5)

Michat Pilipczuk Kernelization lower bounds, part 1

