Lower bounds for polynomial kernelization Part 1

Michał Pilipczuk

Institutt for Informatikk, Universitetet i Bergen

August 19th, 2014

Outline

• **Goal**: how to prove that some problems do **not** admit polynomial kernelization algorithms?

• Part 1:

- Introduction of the (cross)-composition framework.
- Basic examples.
- Part 2:
 - PPT reductions.
 - Case study of several cross-compositions.
 - Weak compositions.

• This will be a complexity theory lecture.

Disclaimer

- This will be a complexity theory lecture.
- Unparameterized problems = languages over Σ = subsets of Σ^* , for a constant size alphabet Σ .

Disclaimer

- This will be a complexity theory lecture.
- Unparameterized problems = languages over Σ = subsets of Σ^* , for a constant size alphabet Σ .
- Parameterized problems are sets of pairs (x, k), where x ∈ Σ^{*} and k is a nonnegative integer.

Disclaimer

- This will be a complexity theory lecture.
- Unparameterized problems = languages over Σ = subsets of Σ^* , for a constant size alphabet Σ .
- Parameterized problems are sets of pairs (x, k), where x ∈ Σ^{*} and k is a nonnegative integer.
- Unparameterized variant: k is appended to x in unary.

• If a decidable problem admits a kernelization algorithm, then it is FPT.

- If a decidable problem admits a kernelization algorithm, then it is FPT.
- Any FPT problem admits a kernelization algorithm:

- If a decidable problem admits a kernelization algorithm, then it is FPT.
- Any FPT problem admits a kernelization algorithm:
 - Let (x, k) be the input instance.

- If a decidable problem admits a kernelization algorithm, then it is FPT.
- Any FPT problem admits a kernelization algorithm:
 - Let (x, k) be the input instance.
 - If $|x| \leq f(k)$, then we already have a kernel.

- If a decidable problem admits a kernelization algorithm, then it is FPT.
- Any FPT problem admits a kernelization algorithm:
 - Let (x, k) be the input instance.
 - If $|x| \leq f(k)$, then we already have a kernel.
 - Otherwise $f(k) \cdot |x|^c = \mathcal{O}(|x|^{c+1})$.

- If a decidable problem admits a kernelization algorithm, then it is FPT.
- Any FPT problem admits a kernelization algorithm:
 - Let (x, k) be the input instance.
 - If $|x| \leq f(k)$, then we already have a kernel.
 - Otherwise $f(k) \cdot |x|^c = \mathcal{O}(|x|^{c+1})$.

• Question of existence of any kernel is equivalent to being FPT.

- If a decidable problem admits a kernelization algorithm, then it is FPT.
- Any FPT problem admits a kernelization algorithm:
 - Let (x, k) be the input instance.
 - If $|x| \leq f(k)$, then we already have a kernel.
 - Otherwise $f(k) \cdot |x|^c = \mathcal{O}(|x|^{c+1})$.
- Question of existence of any kernel is equivalent to being FPT.
- We are interested in **polynomial kernels**, where *f* is a polynomial.

- If a decidable problem admits a kernelization algorithm, then it is FPT.
- Any FPT problem admits a kernelization algorithm:
 - Let (x, k) be the input instance.
 - If $|x| \leq f(k)$, then we already have a kernel.
 - Otherwise $f(k) \cdot |x|^c = \mathcal{O}(|x|^{c+1})$.
- Question of existence of any kernel is equivalent to being FPT.
- We are interested in **polynomial kernels**, where *f* is a polynomial.
- Before 2008, no tool to classify FPT problems wrt. whether they have polykernels or not.

• Consider the *k*-PATH problem: verify whether the input graph contains a simple path on *k* vertices.

- Consider the *k*-PATH problem: verify whether the input graph contains a simple path on *k* vertices.
- Suppose for a moment that *k*-PATH admits a kernel that has always, say, at most *k*³ vertices.

- Consider the *k*-PATH problem: verify whether the input graph contains a simple path on *k* vertices.
- Suppose for a moment that *k*-PATH admits a kernel that has always, say, at most *k*³ vertices.
- Take $t = k^7$ instances $(G_1, k), (G_2, k), ..., (G_t, k)$.

- Consider the *k*-PATH problem: verify whether the input graph contains a simple path on *k* vertices.
- Suppose for a moment that *k*-PATH admits a kernel that has always, say, at most *k*³ vertices.
- Take $t = k^7$ instances $(G_1, k), (G_2, k), ..., (G_t, k)$.
- Let *H* be a disjoint union of G_1, G_2, \ldots, G_t . Then the answer to (H, k) is YES if and only if the answer to any (G_i, k) is YES.

- Consider the *k*-PATH problem: verify whether the input graph contains a simple path on *k* vertices.
- Suppose for a moment that *k*-PATH admits a kernel that has always, say, at most *k*³ vertices.
- Take $t = k^7$ instances $(G_1, k), (G_2, k), \dots, (G_t, k)$.
- Let *H* be a disjoint union of G_1, G_2, \ldots, G_t . Then the answer to (H, k) is YES if and only if the answer to any (G_i, k) is YES.
- Apply kernelization to (H, k) obtaining an instance with k³ vertices, encodable in k⁶ bits.

• Intuition: The final number of bits is much less than the number input instances. Most of the instances must have been discarded completely.

KERNELIZATION

KERNELIZATION

KERNELIZATION

• A polynomial kernelization is always a polynomial compression.

- A polynomial kernelization is always a polynomial compression.
- A polynomial compression can be turned into a polynomial kernelization provided that there is a **P**-reduction from *R* to *L*.

- A polynomial kernelization is always a polynomial compression.
- A polynomial compression can be turned into a polynomial kernelization provided that there is a **P**-reduction from *R* to *L*.
 - For instance, when $R \in \mathbf{NP}$ and L is \mathbf{NP} -hard.

- A polynomial kernelization is always a polynomial compression.
- A polynomial compression can be turned into a polynomial kernelization provided that there is a **P**-reduction from *R* to *L*.

• For instance, when $R \in \mathbf{NP}$ and L is \mathbf{NP} -hard.

• Note: There are examples when a poly-compression is known but a poly-kernel is not known, because it is unclear whether *R* is in **NP**.

OR-distillation

• Let *L*, *R* be *unparameterized* languages.

• Let *L*, *R* be *unparameterized* languages.

OR-distillation of L into R

Input:Strings x_1, x_2, \ldots, x_t , each of length at most k.Time: $poly(t + \sum_{i=1}^t |x_i|)$.Output:One string y such that(a)|y| = poly(k), and(b) $y \in R$ if and only if $x_i \in L$ for at least one i.

OR-distillation on picture
OR-distillation on picture

OR-distillation on picture

OR-distillation on picture

• Grocery intuition:

• Grocery intuition:

• Suppose input instances are apples, and the OR-distillation algorithm is a blender.

• Grocery intuition:

- Suppose input instances are apples, and the OR-distillation algorithm is a blender.
- If one of the apples was rotten, then the blend must be untasty.

Grocery intuition:

- Suppose input instances are apples, and the OR-distillation algorithm is a blender.
- If one of the apples was rotten, then the blend must be untasty.
- If the blend is much smaller than the total input fruit mass, then it will be possible that a computationally too weak blender will lose the rotten apple.

Grocery intuition:

- Suppose input instances are apples, and the OR-distillation algorithm is a blender.
- If one of the apples was rotten, then the blend must be untasty.
- If the blend is much smaller than the total input fruit mass, then it will be possible that a computationally too weak blender will lose the rotten apple.
- OR-L: language of strings x₁#x₂#... #x_t such that x_i ∈ L for at least one i.

Grocery intuition:

- Suppose input instances are apples, and the OR-distillation algorithm is a blender.
- If one of the apples was rotten, then the blend must be untasty.
- If the blend is much smaller than the total input fruit mass, then it will be possible that a computationally too weak blender will lose the rotten apple.
- OR-L: language of strings x₁ #x₂ # ... #x_t such that x_i ∈ L for at least one i.
- OR-distillation of *L* into *R* is a polynomial compression of OR-*L* into *R*, where OR-*L* is parameterized by max |*x_i*|.

Backbone theorem

OR-distillation theorem

Fortnow, Santhanam; STOC 2008, JCSS 2011

SAT does not admit an OR-distillation algorithm into any language R, unless **NP** \subseteq **coNP**/poly.

Backbone theorem

OR-distillation theorem

Fortnow, Santhanam; STOC 2008, JCSS 2011

SAT does not admit an OR-distillation algorithm into any language R, unless **NP** \subseteq **coNP**/poly.

Corollary

No **NP**-hard problem admits an OR-distillation algorithm into any language R, unless **NP** \subseteq **coNP**/poly.

• Assumption $NP \subseteq coNP/poly$ may seem mysterious.

- Assumption $NP \subseteq coNP/poly$ may seem mysterious.
- More known variant: $NP \neq coNP$.

- Assumption $NP \subseteq coNP/poly$ may seem mysterious.
- More known variant: $NP \neq coNP$.
 - Verifying proofs in **P**-time is not equivalent to veryfying counterexamples in **P**-time.

- Assumption $NP \subseteq coNP/poly$ may seem mysterious.
- More known variant: $NP \neq coNP$.
 - Verifying proofs in **P**-time is not equivalent to veryfying counterexamples in **P**-time.
- NP ⊆ coNP/poly is strengthening of this by saying that verifying proofs cannot be simulated by verifying counterexamples even is we allow *polynomial advice*.

- Assumption $NP \subseteq coNP/poly$ may seem mysterious.
- More known variant: $NP \neq coNP$.
 - Verifying proofs in **P**-time is not equivalent to veryfying counterexamples in **P**-time.
- NP ⊆ coNP/poly is strengthening of this by saying that verifying proofs cannot be simulated by verifying counterexamples even is we allow *polynomial advice*.
- It is known that $NP \subseteq coNP/poly$ implies that $PH = \Sigma_3^P$.

- Assumption $NP \subseteq coNP/poly$ may seem mysterious.
- More known variant: $NP \neq coNP$.
 - Verifying proofs in **P**-time is not equivalent to veryfying counterexamples in **P**-time.
- NP ⊆ coNP/poly is strengthening of this by saying that verifying proofs cannot be simulated by verifying counterexamples even is we allow *polynomial advice*.
- It is known that $NP \subseteq coNP/poly$ implies that $PH = \Sigma_3^P$.
- Not as bad as **P** = **NP**, but pretty severe.

• The proof is purely information-theoretical.

- The proof is purely information-theoretical.
- Intuitively, the space for possible kernels is too small to store information about very long sequences of instances.

- The proof is purely information-theoretical.
- Intuitively, the space for possible kernels is too small to store information about very long sequences of instances.
- An algorithm in **P** cannot guess, which instance is more prone to have a positive answer, so we need to store information about **all** of them.

- The proof is purely information-theoretical.
- Intuitively, the space for possible kernels is too small to store information about very long sequences of instances.
- An algorithm in **P** cannot guess, which instance is more prone to have a positive answer, so we need to store information about **all** of them.
- Main trick:

- The proof is purely information-theoretical.
- Intuitively, the space for possible kernels is too small to store information about very long sequences of instances.
- An algorithm in **P** cannot guess, which instance is more prone to have a positive answer, so we need to store information about **all** of them.
- Main trick:
 - show that the space for kernels is so small that one can find a linear number of *representative* kernels;

- The proof is purely information-theoretical.
- Intuitively, the space for possible kernels is too small to store information about very long sequences of instances.
- An algorithm in **P** cannot guess, which instance is more prone to have a positive answer, so we need to store information about **all** of them.
- Main trick:
 - show that the space for kernels is so small that one can find a linear number of *representative* kernels;
 - plug these kernels as the advice to a **coNP**-algorithm for SAT.

- The proof is purely information-theoretical.
- Intuitively, the space for possible kernels is too small to store information about very long sequences of instances.
- An algorithm in **P** cannot guess, which instance is more prone to have a positive answer, so we need to store information about **all** of them.
- Main trick:
 - show that the space for kernels is so small that one can find a linear number of *representative* kernels;
 - plug these kernels as the advice to a **coNP**-algorithm for SAT.
- Look into the book.

OR-composition

• Let *L* be a *parameterized* language.

• Let *L* be a *parameterized* language.

OR-composition algorithm for L

Input:Instances $(x_1, k), (x_2, k), \dots, (x_t, k).$ Time: $poly(t + \sum_{i=1}^{t} |x_i| + k).$ Output:One instance (y, k^*) such that(a) $k^* = poly(k)$, and(b) $(y, k^*) \in L$ iff $(x_i, k) \in L$ for at least one i.

OR-composition theorem

OR-composition theorem

Bodlaender et al.; ICALP 2008, JCSS 2009

If a parameterized problem L admits an OR-composition algorithm, and the unparameterized version of L is **NP**-hard, then L does not admit a polynomial kernel unless **NP** \subseteq **coNP**/poly.

Michał Pilipczuk Kernelization lower bounds, part 1

• *k*-PATH does not admit poly-kernel, unless $NP \subseteq coNP/poly$.

- *k*-PATH does not admit poly-kernel, unless $NP \subseteq coNP/poly$.
- **Composition**: Take disjoint union of graphs and the same parameter.

- *k*-PATH does not admit poly-kernel, unless $NP \subseteq coNP/poly$.
- **Composition**: Take disjoint union of graphs and the same parameter.
 - A graph admits a *k*-path iff any of its connected components does.

Corollaries

- *k*-PATH does not admit poly-kernel, unless $NP \subseteq coNP/poly$.
- **Composition**: Take disjoint union of graphs and the same parameter.
 - A graph admits a *k*-path iff any of its connected components does.
- Same for k-CYCLE; this opens a bag of results.

Corollaries

- *k*-PATH does not admit poly-kernel, unless **NP** \subseteq **coNP**/poly.
- **Composition**: Take disjoint union of graphs and the same parameter.
 - A graph admits a *k*-path iff any of its connected components does.
- Same for k-CYCLE; this opens a bag of results.
- Today, investigating the existence of a polynomial kernel is an immediate second goal after showing that a problem is FPT.

• Does the proof actually exclude even polynomial compression, not just kernelization?

- Does the proof actually exclude even polynomial compression, not just kernelization?
 - Sure, we will just end up with an instance of OR-R.

- Does the proof actually exclude even polynomial compression, not just kernelization?
 - Sure, we will just end up with an instance of OR-R.
- Do we need to start the composition with the same language *L* as we apply the compression to?

- Does the proof actually exclude even polynomial compression, not just kernelization?
 - Sure, we will just end up with an instance of OR-R.
- Do we need to start the composition with the same language *L* as we apply the compression to?
 - No, the composition algorithm can compose instances of any language Q into one instance of L.

- Does the proof actually exclude even polynomial compression, not just kernelization?
 - Sure, we will just end up with an instance of OR-R.
- Do we need to start the composition with the same language *L* as we apply the compression to?
 - No, the composition algorithm can compose instances of any language Q into one instance of L.
- Can we add more refined bucket sorting? For instance, also by the number of vertices in the graph?

- Does the proof actually exclude even polynomial compression, not just kernelization?
 - Sure, we will just end up with an instance of OR-R.
- Do we need to start the composition with the same language *L* as we apply the compression to?
 - No, the composition algorithm can compose instances of any language *Q* into one instance of *L*.
- Can we add more refined bucket sorting? For instance, also by the number of vertices in the graph?
 - Yes, as long as we have polynomial number of buckets.

• How large can t be?

- How large can t be?
- Well, not larger than $(|\Sigma|+1)^k$, as we may remove duplicates of the input instances.

- How large can t be?
- Well, not larger than $(|\Sigma|+1)^k$, as we may remove duplicates of the input instances.
- Hence, we may assume that $\log t = \mathcal{O}(k)$,

- How large can t be?
- Well, not larger than $(|\Sigma|+1)^k$, as we may remove duplicates of the input instances.
- Hence, we may assume that $\log t = \mathcal{O}(k)$,
- which means that the parameter of the composed instance may depend polynomially on **both** *k* and log *t*.

- How large can t be?
- Well, not larger than $(|\Sigma|+1)^k$, as we may remove duplicates of the input instances.
- Hence, we may assume that $\log t = \mathcal{O}(k)$,
- which means that the parameter of the composed instance may depend polynomially on **both** *k* and log *t*.
- Observed also earlier via different arguments (Dom, Lokshtanov, and Saurabh; ICALP 2009).

After invention of the composition framework

• A huge amount of no-poly-kernel results.

After invention of the composition framework

- A huge amount of no-poly-kernel results.
- Most of the works use a subset of mentioned features.

After invention of the composition framework

- A huge amount of no-poly-kernel results.
- Most of the works use a subset of mentioned features.
- STACS 2011: Bodlaender, Jansen, and Kratsch propose a new formalism, dubbed **cross-composition**, that gathers all these features.

Polynomial equivalence relation

An equivalence relation \mathcal{R} on Σ^* is called a polynomial equivalence relation if the following two conditions hold:

- Checking whether two strings x, y ∈ Σ* are *R*-equivalent can be done in poly(|x| + |y|) time.
- \mathcal{R} partitions strings of length at most *n* into poly(*n*) equivalence classes.

Polynomial equivalence relation

An equivalence relation \mathcal{R} on Σ^* is called a polynomial equivalence relation if the following two conditions hold:

- Checking whether two strings x, y ∈ Σ* are *R*-equivalent can be done in poly(|x| + |y|) time.
- \mathcal{R} partitions strings of length at most *n* into poly(*n*) equivalence classes.

• Examples:

Polynomial equivalence relation

An equivalence relation \mathcal{R} on Σ^* is called a polynomial equivalence relation if the following two conditions hold:

- Checking whether two strings x, y ∈ Σ* are *R*-equivalent can be done in poly(|x| + |y|) time.
- \mathcal{R} partitions strings of length at most *n* into poly(*n*) equivalence classes.

• Examples:

• partitioning with respect to the number of vertices of the graph;

Polynomial equivalence relation

An equivalence relation \mathcal{R} on Σ^* is called a polynomial equivalence relation if the following two conditions hold:

- Checking whether two strings x, y ∈ Σ* are *R*-equivalent can be done in poly(|x| + |y|) time.
- \mathcal{R} partitions strings of length at most *n* into poly(*n*) equivalence classes.

Examples:

- partitioning with respect to the number of vertices of the graph;
- or with respect to (i) the number of vertices, (ii) the number of edges, (iii) size of the maximum matching, (iv) budget.

Cross-composition

Cross-composition

An unparameterized problem Q cross-composes into a parameterized problem L, if there exists a polynomial equivalence relation \mathcal{R} and an algorithm that, given \mathcal{R} -equivalent strings x_1, x_2, \ldots, x_t , in time $poly\left(t + \sum_{i=1}^{t} |x_i|\right)$ produces one instance (y, k^*) such that

•
$$(y, k^*) \in L$$
 iff $x_i \in Q$ for at least one $i = 1, 2, ..., t$,

•
$$k^* = \text{poly}(\log t + \max_{i=1}^t |x_i|).$$

Cross-composition

Cross-composition

An unparameterized problem Q cross-composes into a parameterized problem L, if there exists a polynomial equivalence relation \mathcal{R} and an algorithm that, given \mathcal{R} -equivalent strings x_1, x_2, \ldots, x_t , in time poly $(t + \sum_{i=1}^{t} |x_i|)$ produces one instance (y, k^*) such that

•
$$(y, k^*) \in L$$
 iff $x_i \in Q$ for at least one $i = 1, 2, ..., t$,

•
$$k^* = \text{poly}(\log t + \max_{i=1}^t |x_i|).$$

Cross-composition theorem

Bodlaender et al.; STACS 2011, SIDMA 2014

If some **NP**-hard problem Q cross-composes into L, then L does not admit a polynomial compression into any language R, unless **NP** \subseteq **coNP**/poly.

 $k = \max |x_i|, \quad \log t = \mathcal{O}(k)$

 $k = \max |x_i|, \quad \log t = \mathcal{O}(k)$

Michał Pilipczuk

Michał Pilipczuk

Kernelization lower bounds, part 1

 $k = \max |x_i|, \quad \log t = \mathcal{O}(k)$

Michał Pilipczuk Kernelization lower bounds, part 1

 $k = \max |x_i|, \quad \log t = \mathcal{O}(k)$

• Original application of Bodlaender, Jansen and Kratsch was that of *structural parameters*.

- Original application of Bodlaender, Jansen and Kratsch was that of *structural parameters*.
- In fact, cross-composition is a good framework to express also all the previous results.

- Original application of Bodlaender, Jansen and Kratsch was that of *structural parameters*.
- In fact, cross-composition is a good framework to express also all the previous results.
- **Plan for now**: show a few cross-compositions and give intuition about basic tricks.

Set Splitting

Input:Universe U and family of subsets $\mathcal{F} \subseteq 2^U$ Parameter:|U|Question:Does there exist a colouring $\mathcal{C} : U \rightarrow \{\mathbf{B}, \mathbf{W}\}$ such that every set $X \in \mathcal{F}$ is split, i.e.,
contains a black and a white element?

Set Splitting

Input:Universe U and family of subsets $\mathcal{F} \subseteq 2^U$ Parameter:|U|Question:Does there exist a colouring $\mathcal{C} : U \to \{\mathbf{B}, \mathbf{W}\}$ such that every set $X \in \mathcal{F}$ is split, i.e.,
contains a black and a white element?

 \bullet We show a cross-composition of Set $\operatorname{Splitting}$ into itself.

Set Splitting

Input:Universe U and family of subsets $\mathcal{F} \subseteq 2^U$ Parameter:|U|Question:Does there exist a colouring $\mathcal{C} : U \rightarrow \{\mathbf{B}, \mathbf{W}\}$ such that every set $X \in \mathcal{F}$ is split, i.e.,
contains a black and a white element?

- We show a cross-composition of SET SPLITTING into itself.
- We may assume that the universes are of the same size, hence we think of them as of one, common universe.

Set Splitting

Input:Universe U and family of subsets $\mathcal{F} \subseteq 2^U$ Parameter:|U|Question:Does there exist a colouring $\mathcal{C} : U \rightarrow \{\mathbf{B}, \mathbf{W}\}$ such that every set $X \in \mathcal{F}$ is split, i.e.,
contains a black and a white element?

- \bullet We show a cross-composition of Set $\operatorname{Splitting}$ into itself.
- We may assume that the universes are of the same size, hence we think of them as of one, common universe.
- Assume that t is a power of 2 (by copying the instances).

Input: Instances (U, \mathcal{F}^i)

Output: Instance (U^*, \mathcal{F}^*)

Input: Instances (U, \mathcal{F}^i)

Output: Instance (U^*, \mathcal{F}^*)

Input: Instances (U, \mathcal{F}^i)

Output: Instance (U^*, \mathcal{F}^*)

PLAYGROUND

Michał Pilipczuk Kernelization lower bounds, part 1

PLAYGROUND

Michał Pilipczuk Kernelization lower bounds, part 1

Michał Pilipczuk Kernelization lower bounds, part 1

Take any solution C

• Unparameterized SET SPLITTING cross-composes into SET SPLITTING parameterized by |U|.

- Unparameterized SET SPLITTING cross-composes into SET SPLITTING parameterized by |U|.
- Unparameterized SET SPLITTING is **NP**-hard.

- Unparameterized SET SPLITTING cross-composes into SET SPLITTING parameterized by |U|.
- Unparameterized SET SPLITTING is **NP**-hard.
- Hence SET SPLITTING parameterized by |U| does not admit a polynomial kernel, unless NP ⊆ coNP/poly.

- Unparameterized SET SPLITTING cross-composes into SET SPLITTING parameterized by |U|.
- Unparameterized SET SPLITTING is **NP**-hard.
- Hence SET SPLITTING parameterized by |U| does not admit a polynomial kernel, unless NP ⊆ coNP/poly.
- Main lesson:

- Unparameterized SET SPLITTING cross-composes into SET SPLITTING parameterized by |U|.
- Unparameterized SET SPLITTING is **NP**-hard.
- Hence SET SPLITTING parameterized by |U| does not admit a polynomial kernel, unless NP ⊆ coNP/poly.
- Main lesson:
 - Model the **choice** of the instance to be solved.

- Unparameterized SET SPLITTING cross-composes into SET SPLITTING parameterized by |U|.
- Unparameterized SET SPLITTING is **NP**-hard.
- Hence SET SPLITTING parameterized by |U| does not admit a polynomial kernel, unless NP ⊆ coNP/poly.
- Main lesson:
 - Model the **choice** of the instance to be solved.
 - One strategy is to choose log t bits of its index on an appropriate gadget.

- Unparameterized SET SPLITTING cross-composes into SET SPLITTING parameterized by |U|.
- Unparameterized SET SPLITTING is **NP**-hard.
- Hence SET SPLITTING parameterized by |U| does not admit a polynomial kernel, unless NP ⊆ coNP/poly.
- Main lesson:
 - Model the **choice** of the instance to be solved.
 - One strategy is to choose log t bits of its index on an appropriate gadget.
 - Choice of the index make the instance active, while the other instances are 'switched off'.

- Unparameterized SET SPLITTING cross-composes into SET SPLITTING parameterized by |U|.
- Unparameterized SET SPLITTING is **NP**-hard.
- Hence SET SPLITTING parameterized by |U| does not admit a polynomial kernel, unless NP ⊆ coNP/poly.
- Main lesson:
 - Model the **choice** of the instance to be solved.
 - One strategy is to choose log t bits of its index on an appropriate gadget.
 - Choice of the index make the instance active, while the other instances are 'switched off'.
- Tomorrow: More combinatorial examples.

• Everything we said so far would work in the same manner for AND function instead of OR.

- Everything we said so far would work in the same manner for AND function instead of OR.
- **Problem**: The proof of Fortnow and Santhanam inherently breaks for AND.

- Everything we said so far would work in the same manner for AND function instead of OR.
- **Problem**: The proof of Fortnow and Santhanam inherently breaks for AND.

AND-distillation theorem

Drucker; FOCS 2012

SAT does not admit an AND-distillation algorithm into any language R, unless $NP \subseteq coNP/poly$.

- Everything we said so far would work in the same manner for AND function instead of OR.
- **Problem**: The proof of Fortnow and Santhanam inherently breaks for AND.

AND-distillation theorem

 SAT does not admit an AND-distillation algorithm into any language

R, unless $NP \subseteq coNP/poly$.

• All the rest of the framework works the same (AND-cross-compositions, etc.).

Drucker: FOCS 2012

- Everything we said so far would work in the same manner for AND function instead of OR.
- **Problem**: The proof of Fortnow and Santhanam inherently breaks for AND.

AND-distillation theorem

SAT does not admit an AND-distillation algorithm into any language R, unless $NP \subseteq coNP/poly$.

- All the rest of the framework works the same (AND-cross-compositions, etc.).
- In particular, TREEWIDTH, PATHWIDTH, etc. do not admit polykernels, unless NP ⊆ coNP/poly.

Drucker: FOCS 2012

Exercise 15.4, points 1, 2, 11, 12, 13.

Tikz faces based on a code by Raoul Kessels, http://www.texample.net/tikz/examples/emoticons/,

under Creative Commons Attribution 2.5 license (CC BY 2.5)