Lower bounds for polynomial kernelization Part 2

Michał Pilipczuk

Institutt for Informatikk, Universitetet i Bergen

August $20^{\rm th},\ 2014$

Outline

- **Goal**: how to prove that for some problems polynomial kernels do **not** exist?
- Part 1:
 - Introduction of the (cross)-composition framework.
 - Basic example.
- Part 2:
 - PPT reductions.
 - Case study of several cross-compositions.
 - Weak compositions.

• **Composition**: an algorithm composing many instances into one instance simulating their OR.

- **Composition**: an algorithm composing many instances into one instance simulating their OR.
 - The new instance has parameter bounded polynomially in the maximum size of an input instance.

- **Composition**: an algorithm composing many instances into one instance simulating their OR.
 - The new instance has parameter bounded polynomially in the maximum size of an input instance.
- Composition+Compression gives OR-Distillation

- **Composition**: an algorithm composing many instances into one instance simulating their OR.
 - The new instance has parameter bounded polynomially in the maximum size of an input instance.
- Composition+Compression gives OR-Distillation
- OR-Distillation of an NP-hard language contradicts coNP ⊆ NP/poly.

- **Composition**: an algorithm composing many instances into one instance simulating their OR.
 - The new instance has parameter bounded polynomially in the maximum size of an input instance.
- Composition+Compression gives OR-Distillation
- OR-Distillation of an NP-hard language contradicts coNP ⊆ NP/poly.
- **Corollary**: To show no-poly-kernel it suffices to construct a composition algorithm.

Cross-composition

An unparameterized problem Q cross-composes into a parameterized problem L, if there exists a polynomial equivalence relation \mathcal{R} and an algorithm that, given \mathcal{R} -equivalent strings x_1, x_2, \ldots, x_t , in time poly $(t + \sum_{i=1}^{t} |x_i|)$ produces one instance (y, k^*) such that

•
$$(y, k^*) \in L$$
 iff $x_i \in Q$ for at least one $i = 1, 2, ..., t$,

•
$$k^* = \text{poly}(\log t + \max_{i=1}^t |x_i|).$$

Cross-composition theorem

Bodlaender et al.; STACS 2011, SIDMA 2014

If some **NP**-hard problem Q cross-composes into L, then L does not admit a polynomial compression into any language R, unless **NP** \subseteq **coNP**/poly.

• Idea: Hardness of kernelization can be transferred via reductions, similarly to NP-hardness.

• Idea: Hardness of kernelization can be transferred via reductions, similarly to NP-hardness.

Polynomial parameter transformation (PPT)

A polynomial parameter transformation from a parameterized problem P to a parameterized problem Q is a polynomial-time algorithm that transforms a given instance (x, k) of P into an equivalent instance (y, k') of Q such that k' = poly(k).

PPTs: properties

Observation

If problem P PPT-reduces to Q, and P does not admit a polynomial compression algorithm (into any language R), then neither does Q.

PPTs: properties

Observation

If problem P PPT-reduces to Q, and P does not admit a polynomial compression algorithm (into any language R), then neither does Q.

• **Proof**: Compose the PPT-reduction with the assumed compression for *Q*.

Application 2: STEINER TREE

STEINER TREE

Input:	Graph G with designated terminals $T \subseteq V(G)$,
	and an integer <i>k</i>
Parameter:	k + T
Question	Is there a set $X\subseteq V(G)\setminus T$, such that $ X \leq k$
	and $G[T \cup X]$ is connected?

Application 2: STEINER TREE

STEINER TREE

Input:	Graph G with designated terminals $T \subseteq V(G)$,
	and an integer <i>k</i>
Parameter:	k + T
Question	Is there a set $X\subseteq V(G)\setminus T$, such that $ X \leq k$
	and $G[T \cup X]$ is connected?

• Follows from a PPT from SET COVER par. by |U|.

Application 2: STEINER TREE

STEINER TREE

Input:	Graph G with designated terminals $T \subseteq V(G)$,
	and an integer <i>k</i>
Parameter:	k + T
Question	Is there a set $X\subseteq V(G)\setminus T$, such that $ X \leq k$
	and $G[T \cup X]$ is connected?

- Follows from a PPT from SET COVER par. by |U|.
- But we will present an alternative approach.

The pivot problem technique

• Introduce an simpler problem *P*, which is almost trivially compositional.

- Introduce an simpler problem *P*, which is almost trivially compositional.
- Then design a PPT from *P* to the target problem.

- Introduce an simpler problem *P*, which is almost trivially compositional.
- Then design a PPT from *P* to the target problem.
- Move the weight of the proof to the transformation and the actual definition of *P*.

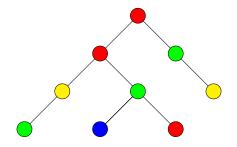
- Introduce an simpler problem *P*, which is almost trivially compositional.
- Then design a PPT from *P* to the target problem.
- Move the weight of the proof to the transformation and the actual definition of *P*.
- Idea: Extract the essence of the problem.

Colourful Graph Motif

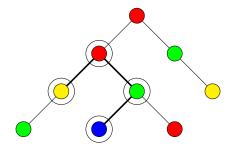
Colourful Graph Motif

Input:	Graph G and a colouring function $C: V(G) \rightarrow \{1, 2, \dots, k\}$
Parameter: Question:	k k Does there exists a connected subgraph H of G containing exactly one vertex of each colour?

COLOURFUL GRAPH MOTIF — example



COLOURFUL GRAPH MOTIF — example



• Introduced by Fellows et al. (ICALP 2007, JCSS 2011).

- Introduced by Fellows et al. (ICALP 2007, JCSS 2011).
- NP-hard even on trees.

- Introduced by Fellows et al. (ICALP 2007, JCSS 2011).
- NP-hard even on trees.
- Interesting FPT algorithms for various variants using the algebraic approach.

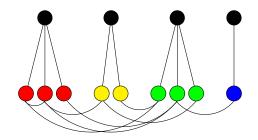
- Introduced by Fellows et al. (ICALP 2007, JCSS 2011).
- NP-hard even on trees.
- Interesting FPT algorithms for various variants using the algebraic approach.
- Trivial composition algorithm: take the disjoint union of instances, reuse colors.

- Introduced by Fellows et al. (ICALP 2007, JCSS 2011).
- NP-hard even on trees.
- Interesting FPT algorithms for various variants using the algebraic approach.
- Trivial composition algorithm: take the disjoint union of instances, reuse colors.
- Hence, CGM does not have a polykernel unless $coNP \subseteq NP/poly$.

- Introduced by Fellows et al. (ICALP 2007, JCSS 2011).
- NP-hard even on trees.
- Interesting FPT algorithms for various variants using the algebraic approach.
- Trivial composition algorithm: take the disjoint union of instances, reuse colors.
- Hence, CGM does not have a polykernel unless $coNP \subseteq NP/poly.$
- \bullet Now: PPT-reduction from ${\rm CGM}$ to ${\rm ST}.$

From ${\rm CGM}$ to ${\rm ST}$

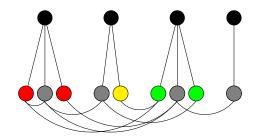
From ${\rm CGM}$ to ${\rm ST}$



Attach a terminal to every colour class

Give budget k for Steiner nodes

From ${\rm CGM}$ to ${\rm ST}$



Attach a terminal to every colour class

Give budget k for Steiner nodes

CGM does not admit a polynomial kernel, unless coNP ⊆ NP/poly.

- CGM does not admit a polynomial kernel, unless $coNP \subseteq NP/poly.$
- CGM PPT-reduces to STEINER TREE par. by k + |T|.

- CGM does not admit a polynomial kernel, unless $coNP \subseteq NP/poly$.
- CGM PPT-reduces to STEINER TREE par. by k + |T|.
- Hence STEINER TREE par. by k + |T| does not admit a polynomial kernel, unless **coNP** \subseteq **NP**/poly.

Application 3: SET COVER par. by |U|

Set Cover

Input:Universe U, a family of subsets $\mathcal{F} \subseteq 2^U$, integer kParameter:|U|Question:Is there a subfamily $\mathcal{G} \subseteq \mathcal{F}$, $|\mathcal{G}| \leq k$,
such that $\bigcup \mathcal{G} = U$?

Application 3: SET COVER par. by |U|

Set Cover

Input:Universe U, a family of subsets $\mathcal{F} \subseteq 2^U$, integer kParameter:|U|Question:Is there a subfamily $\mathcal{G} \subseteq \mathcal{F}$, $|\mathcal{G}| \leq k$,
such that $\bigcup \mathcal{G} = U$?

• **Convention**: We view it as a bipartite graph with one side (blue) trying to dominate the other one (red).

Application 3: SET COVER par. by |U|

Set Cover

Input:Universe U, a family of subsets $\mathcal{F} \subseteq 2^U$, integer kParameter:|U|Question:Is there a subfamily $\mathcal{G} \subseteq \mathcal{F}$, $|\mathcal{G}| \leq k$,
such that $\bigcup \mathcal{G} = U$?

- **Convention**: We view it as a bipartite graph with one side (blue) trying to dominate the other one (red).
- W.I.o.g. $k \leq |U|$.

Colourful Set Cover

COLOURFUL SET COVER

Input:	Universe U and families $\mathcal{F}_1, \mathcal{F}_2, \dots, \mathcal{F}_k \subseteq 2^U$
Parameter:	U + k
Question	Is there a family \mathcal{G} containing exactly one set from each family \mathcal{F} such that $ \mathcal{G} = \mathcal{I} ^2$
	from each family \mathcal{F}_i , such that $\bigcup \mathcal{G} = U$?

• $SC \leq_{PPT} CSC$:

- $SC \leq_{PPT} CSC$:
 - Put $\mathcal{F}_i = \mathcal{F}$ for every *i*.

- $SC \leq_{PPT} CSC$:
 - Put $\mathcal{F}_i = \mathcal{F}$ for every *i*.
- $CSC \leq_{PPT} SC$:

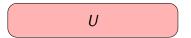
- $SC \leq_{PPT} CSC$:
 - Put $\mathcal{F}_i = \mathcal{F}$ for every *i*.
- $CSC \leq_{PPT} SC$:
 - Add k elements e_1, e_2, \ldots, e_k ; include e_i in every set from \mathcal{F}_i .

- $SC \leq_{PPT} CSC$:
 - Put $\mathcal{F}_i = \mathcal{F}$ for every *i*.
- $CSC \leq_{PPT} SC$:
 - Add k elements e_1, e_2, \ldots, e_k ; include e_i in every set from \mathcal{F}_i .
 - Then take $\mathcal{F} = \bigcup \mathcal{F}_i$.

- $SC \leq_{PPT} CSC$:
 - Put $\mathcal{F}_i = \mathcal{F}$ for every *i*.
- $CSC \leq_{PPT} SC$:
 - Add k elements e_1, e_2, \ldots, e_k ; include e_i in every set from \mathcal{F}_i .
 - Then take $\mathcal{F} = \bigcup \mathcal{F}_i$.
- We will cross-compose COLOURFUL SET COVER into itself.

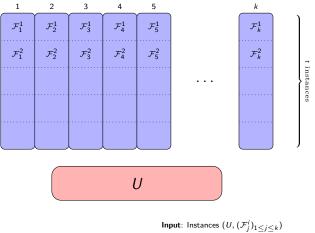
- $SC \leq_{PPT} CSC$:
 - Put $\mathcal{F}_i = \mathcal{F}$ for every *i*.
- $CSC \leq_{PPT} SC$:
 - Add k elements e_1, e_2, \ldots, e_k ; include e_i in every set from \mathcal{F}_i .
 - Then take $\mathcal{F} = \bigcup \mathcal{F}_i$.
- We will cross-compose COLOURFUL SET COVER into itself.
- Assumption: the same universe *U*, the same *k*, and *t* being a power of 2.

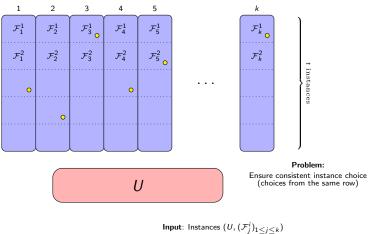
Input: Instances $(U, (\mathcal{F}_j^i)_{1 \le j \le k})$ Output: Instance $(U^*, (\mathcal{F}_j^*)_{1 \le j \le k})$



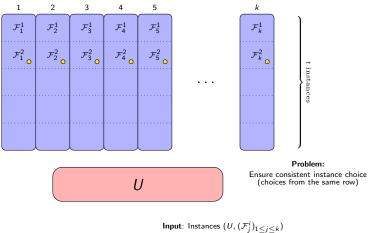
Input: Instances
$$(U, (\mathcal{F}_j^i)_{1 \le j \le k})$$

Output: Instance $(U^*, (\mathcal{F}_j^*)_{1 \le j \le k})$



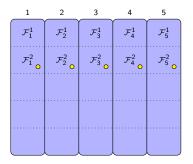


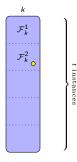
Output: Instance $(U^*, (\mathcal{F}_j^*)_{1 \le j \le k})$



Output: Instance $(U^*, (\mathcal{F}_j^*)_{1 \le j \le k})$

. . .





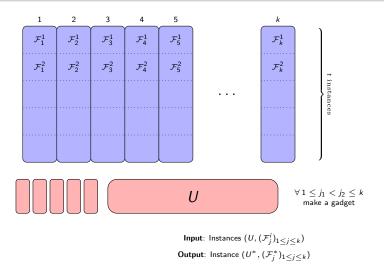
Problem:

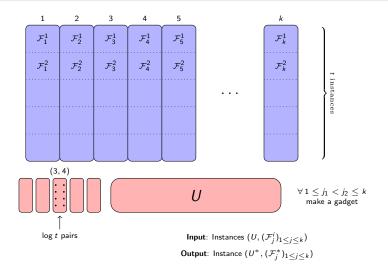
Ensure consistent instance choice (choices from the same row)

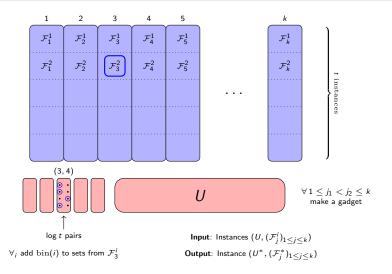
Solution: Equality gadgets

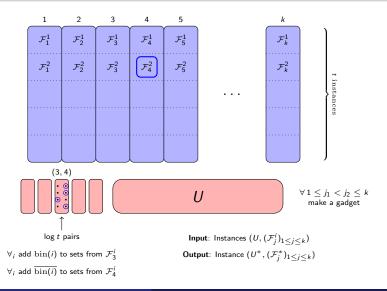
Input: Instances
$$(U, (\mathcal{F}_j^i)_{1 \le j \le k})$$

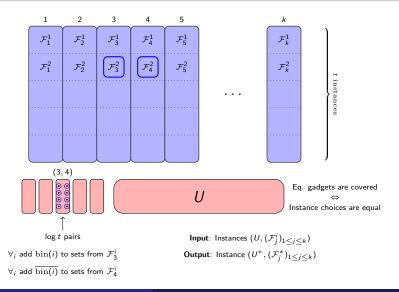
Output: Instance $(U^*, (\mathcal{F}_j^*)_{1 \le j \le k})$

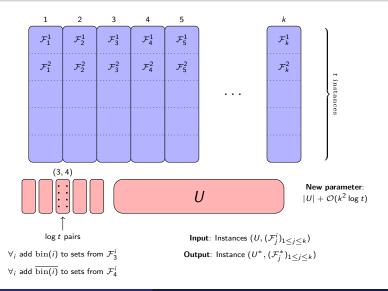












$\bullet~{\rm SC}$ and ${\rm CSC}$ are equivalent wrt. PPTs.

- $\bullet~{\rm SC}$ and ${\rm CSC}$ are equivalent wrt. PPTs.
- CSC does not admit a polynomial compression, unless $NP \subseteq coNP/poly$.

- $\bullet~{\rm SC}$ and ${\rm CSC}$ are equivalent wrt. PPTs.
- CSC does not admit a polynomial compression, unless $NP \subseteq coNP/poly$.
- \bullet So neither does $\operatorname{SC}.$

- $\bullet~{\rm SC}$ and ${\rm CSC}$ are equivalent wrt. PPTs.
- CSC does not admit a polynomial compression, unless $NP \subseteq coNP/poly$.
- So neither does SC.
- Note: parameterization of SET COVER by $|\mathcal{F}|$ also does not admit a polynomial compression.

- $\bullet~{\rm SC}$ and ${\rm CSC}$ are equivalent wrt. PPTs.
- CSC does not admit a polynomial compression, unless $NP \subseteq coNP/poly$.
- So neither does SC.
- Note: parameterization of SET COVER by $|\mathcal{F}|$ also does not admit a polynomial compression.
 - The composition is quite different.

• Idea: Parameterize the problem by a quantitative measure of structure of the graph, rather than intended solution size.

- **Idea**: Parameterize the problem by a quantitative measure of structure of the graph, rather than intended solution size.
 - Example: treewidth parameterizations

- **Idea**: Parameterize the problem by a quantitative measure of structure of the graph, rather than intended solution size.
 - Example: treewidth parameterizations
- From kernelization point of view: work of Bodlaender, Jansen, and Kratsch.

- **Idea**: Parameterize the problem by a quantitative measure of structure of the graph, rather than intended solution size.
 - Example: treewidth parameterizations
- From kernelization point of view: work of Bodlaender, Jansen, and Kratsch.
- Original motivation of cross-composition.

Input:	Graph G, a vertex cover X of G, integer k
Parameter:	X
Question	Is there a clique of size k in G?

CLIQUE/VC

Input:	Graph G , a vertex cover X of G , integer k
Parameter:	X
Question :	Is there a clique of size k in G ?

• W.I.o.g. $k \le |X| + 1$.

Input:	Graph G , a vertex cover X of G , integer k
Parameter:	X
Question :	Is there a clique of size k in G ?

- W.I.o.g. $k \le |X| + 1$.
- Trivially FPT.

Input:	Graph G , a vertex cover X of G , integer k
Parameter:	X
Question :	Is there a clique of size k in G ?

- W.I.o.g. $k \le |X| + 1$.
- Trivially FPT.
- We make a cross-composition from the standard CLIQUE problem.

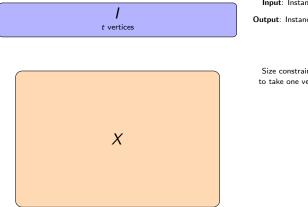
Input:	Graph G , a vertex cover X of G , integer k
Parameter:	X
Question :	Is there a clique of size k in G ?

- W.I.o.g. $k \le |X| + 1$.
- Trivially FPT.
- We make a cross-composition from the standard CLIQUE problem.
- Assume the same number of vertices *n* and the same target size of the clique *k*.

Cross-composing into CLIQUE/VC

Input: Instances (G_i, k)

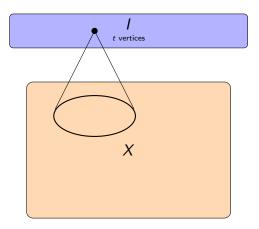
Output: Instance (G, X, k^*)



Input: Instances (G_i, k)

Output: Instance (G, X, k^*)

Size constraints force us to take one vertex from I

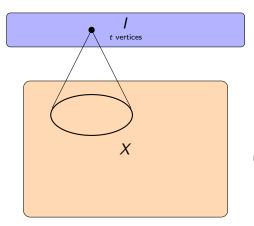


Input: Instances (G_i, k)

Output: Instance (G, X, k^*)

Size constraints force us to take one vertex from *I*.

Neighbourhood of *i*-th vertex from I acts as instance (G_i, k) .



Input: Instances (G_i, k)

Output: Instance (G, X, k^*)

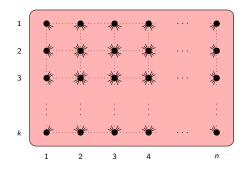
Size constraints force us to take one vertex from *I*.

Neighbourhood of *i*-th vertex from I acts as instance (G_i, k) .

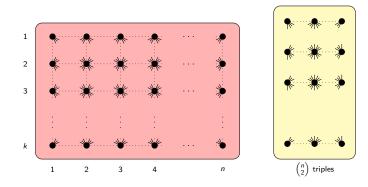
Problem: Design a 'universal' modulator X.

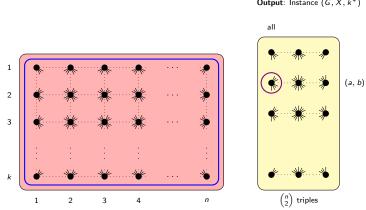
Input: Instances (G_i, k)

Output: Instance (G, X, k^*)

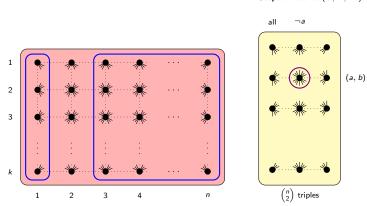


All connections are present except ones in the same row/column.

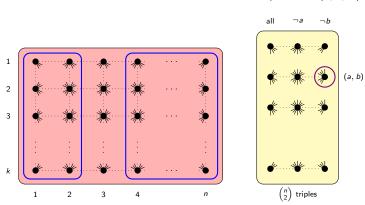




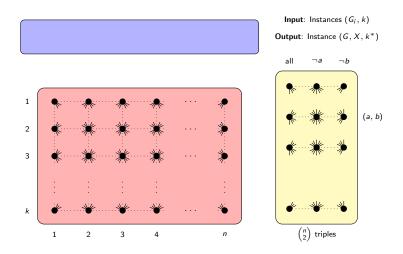
Input: Instances (G_i, k)

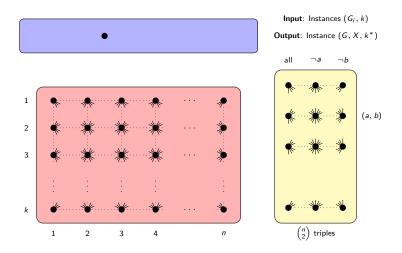


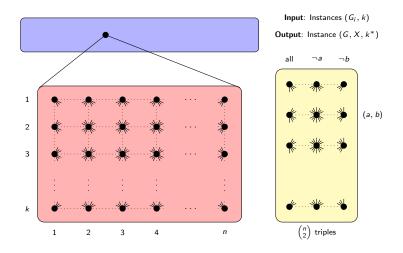
Input: Instances (G_i, k)

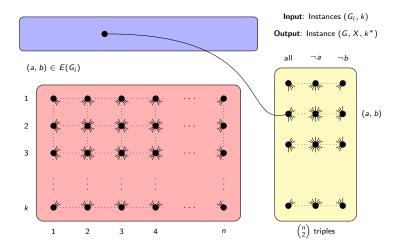


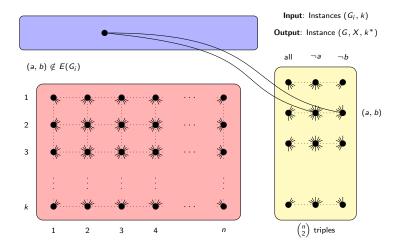
Input: Instances (G_i, k)

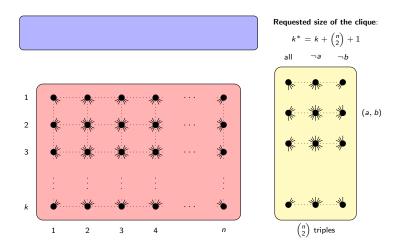


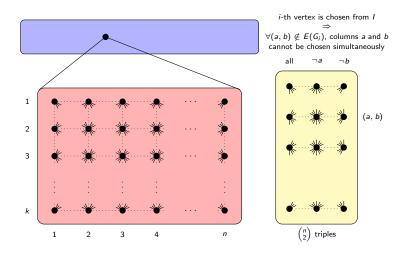


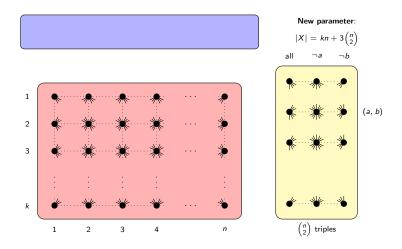












• Making compositions is highly non-trivial.

- Making compositions is highly non-trivial.
- Requires good understanding of the problem.

- Making compositions is highly non-trivial.
- Requires good understanding of the problem.
- Intuitively, what we exploit is **choice**. We need to identify it, and build a technical construction on top of it.

- Making compositions is highly non-trivial.
- Requires good understanding of the problem.
- Intuitively, what we exploit is **choice**. We need to identify it, and build a technical construction on top of it.
- Often it requires a lot of gadgeteering...

- Making compositions is highly non-trivial.
- Requires good understanding of the problem.
- Intuitively, what we exploit is **choice**. We need to identify it, and build a technical construction on top of it.
- Often it requires a lot of gadgeteering...
- ... experience ...

- Making compositions is highly non-trivial.
- Requires good understanding of the problem.
- Intuitively, what we exploit is **choice**. We need to identify it, and build a technical construction on top of it.
- Often it requires a lot of gadgeteering...
- ... experience ...
- ... tricks that I did not mention ...

- Making compositions is highly non-trivial.
- Requires good understanding of the problem.
- Intuitively, what we exploit is **choice**. We need to identify it, and build a technical construction on top of it.
- Often it requires a lot of gadgeteering...
- ... experience ...
- ... tricks that I did not mention ...
- or clever ideas.

 We have seen an O(k²) kernel for FEEDBACK VERTEX SET (bitsize O(k² log k)).

- We have seen an O(k²) kernel for FEEDBACK VERTEX SET (bitsize O(k² log k)).
- Can we prove that a subquadratic kernel is unlikely?

- We have seen an O(k²) kernel for FEEDBACK VERTEX SET (bitsize O(k² log k)).
- Can we prove that a subquadratic kernel is unlikely?
- YES

- We have seen an O(k²) kernel for FEEDBACK VERTEX SET (bitsize O(k² log k)).
- Can we prove that a subquadratic kernel is unlikely?

• YES

• *Weak compositions*: proving lower bounds on kernelization complexity for problems that do have polynomial kernels.

- We have seen an O(k²) kernel for FEEDBACK VERTEX SET (bitsize O(k² log k)).
- Can we prove that a subquadratic kernel is unlikely?

• YES

- *Weak compositions*: proving lower bounds on kernelization complexity for problems that do have polynomial kernels.
- First results by Dell and van Melkebeek (STOC 2010), the framework here by (Dell, Marx; Hermelin, Wu; SODA 2012).

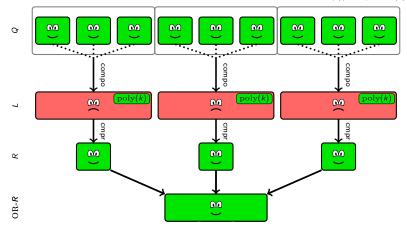
• OR-distillation of $t = k^{1000}$ instances of size k into one instance with bitsize k^7 is unlikely.

- OR-distillation of $t = k^{1000}$ instances of size k into one instance with bitsize k^7 is unlikely.
- Well, it should be unlikely even if we required any bitsize sublinear in *t*.

- OR-distillation of $t = k^{1000}$ instances of size k into one instance with bitsize k^7 is unlikely.
- Well, it should be unlikely even if we required any bitsize sublinear in *t*.
- If one examines the proof, then one can exclude OR-distillation into bitsize O(t^{1−ϵ} · k^c), for any constants ϵ > 0 and c.

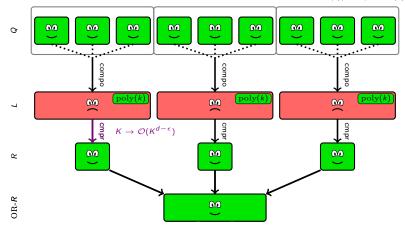
- OR-distillation of $t = k^{1000}$ instances of size k into one instance with bitsize k^7 is unlikely.
- Well, it should be unlikely even if we required any bitsize sublinear in *t*.
- If one examines the proof, then one can exclude OR-distillation into bitsize O(t^{1−ϵ} · k^c), for any constants ϵ > 0 and c.
- Let's look again at the proof of the cross-composition Theorem.

Cross-composition proof, recap



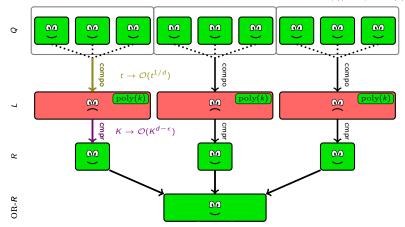
 $k = \max |x_i|, \quad \log t = \mathcal{O}(k)$

Cross-composition proof, recap



 $k = \max |x_i|, \quad \log t = \mathcal{O}(k)$

Cross-composition proof, recap



 $k = \max |x_i|, \quad \log t = \mathcal{O}(k)$

Weak compositions, formally

 It seems that a composition with output bitsize dependence on t being O(t^{1/d}) should exclude compression into bitsize O(k^{d-ε}).

Weak compositions, formally

 It seems that a composition with output bitsize dependence on t being O(t^{1/d}) should exclude compression into bitsize O(k^{d-ε}).

Weak cross-composition

An unparameterized problem Q weakly cross-composes into a parameterized problem L, if there exists a polynomial equivalence relation \mathcal{R} , a real constant $d \geq 1$, and an algorithm that, given \mathcal{R} -equivalent strings x_1, x_2, \ldots, x_t , in time poly $\left(t + \sum_{i=1}^t |x_i|\right)$ produces one instance (y, k^*) such that

•
$$(y, k^*) \in L$$
 iff $x_i \in Q$ for at least one $i = 1, 2, \dots, t$,

•
$$k^* = t^{1/d+o(1)} \cdot \operatorname{poly}(\max_{i=1}^t |x_i|).$$

Weak cross-composition theorem

• Constant *d* will be called the *dimension* of the weak cross-composition.

Weak cross-composition theorem

• Constant *d* will be called the *dimension* of the weak cross-composition.

Weak cross-composition theorem

Suppose some **NP**-hard problem Q admits a weak cross-composition into L with dimension d. Suppose further that L admits a polynomial compression with bitsize $\mathcal{O}(k^{d-\epsilon})$, for some $\epsilon > 0$. Then **NP** \subseteq **coNP**/poly.

Weak cross-composition theorem

• Constant *d* will be called the *dimension* of the weak cross-composition.

Weak cross-composition theorem

Suppose some **NP**-hard problem Q admits a weak cross-composition into L with dimension d. Suppose further that L admits a polynomial compression with bitsize $\mathcal{O}(k^{d-\epsilon})$, for some $\epsilon > 0$. Then **NP** \subseteq **coNP**/poly.

• Note: Also called *cross-composition of bounded cost* by Bodlaender et al. (SIDMA, 2014).

Lower bound for $\operatorname{Vertex}\,\operatorname{Cover}$

 Using weak cross-composition we now prove that VERTEX COVER does not admit a kernel with bitsize O(k^{2-ε}), for any ε > 0. (unless...)

Lower bound for $\operatorname{Vertex}\,\operatorname{Cover}$

- Using weak cross-composition we now prove that VERTEX COVER does not admit a kernel with bitsize $\mathcal{O}(k^{2-\epsilon})$, for any $\epsilon > 0$. (unless...)
- But it had a linear kernel!?

Lower bound for $\operatorname{Vertex}\,\operatorname{Cover}\,$

- Using weak cross-composition we now prove that VERTEX COVER does not admit a kernel with bitsize $\mathcal{O}(k^{2-\epsilon})$, for any $\epsilon > 0$. (unless...)
- But it had a linear kernel!?
- VERTEX COVER has a kernel with 2k vertices, which therefore requires $\mathcal{O}(k^2)$ bits to be encoded.

Lower bound for $\operatorname{Vertex}\,\operatorname{Cover}\,$

- Using weak cross-composition we now prove that VERTEX COVER does not admit a kernel with bitsize $\mathcal{O}(k^{2-\epsilon})$, for any $\epsilon > 0$. (unless...)
- But it had a linear kernel!?
- VERTEX COVER has a kernel with 2k vertices, which therefore requires $\mathcal{O}(k^2)$ bits to be encoded.
- Crux: choose an appropriate problem Q to start with.

Multicolored Biclique

Input:Bipartite graph H with bipartition $A \uplus B$,
where $A = A_1 \uplus \ldots \uplus A_k$, $B = B_1 \uplus \ldots \uplus B_k$.Question:Is there a biclique of size $K_{k,k}$ in H that
contains one vertex from each A_i and each B_i ?

Multicolored Biclique

- Input:Bipartite graph H with bipartition $A \uplus B$,
where $A = A_1 \uplus \ldots \uplus A_k$, $B = B_1 \uplus \ldots \uplus B_k$.Question:Is there a biclique of size $K_{k,k}$ in H that
contains one vertex from each A_i and each B_i ?
 - MULTICOLORED BICLIQUE is **NP**-hard even if each A_i and B_i has the same size.

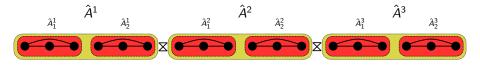
Input:	Bipartite graph H with bipartition $A \uplus B$,
	where $A = A_1 \uplus \ldots \uplus A_k$, $B = B_1 \uplus \ldots \uplus B_k$.
Question :	Is there a biclique of size $K_{k,k}$ in H that
	contains one vertex from each A_i and each B_i ?

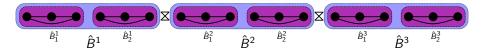
- MULTICOLORED BICLIQUE is **NP**-hard even if each A_i and B_i has the same size.
- We provide a weak cross composition of dimension 2 from this version into VERTEX COVER.

Input:	Bipartite graph H with bipartition $A \uplus B$,
	where $A = A_1 \uplus \ldots \uplus A_k$, $B = B_1 \uplus \ldots \uplus B_k$.
Question :	Is there a biclique of size $K_{k,k}$ in H that
	contains one vertex from each A_i and each B_i ?

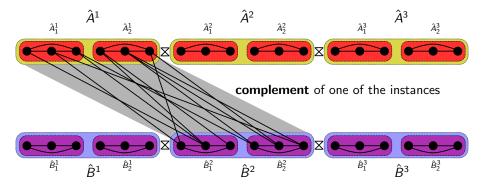
- MULTICOLORED BICLIQUE is **NP**-hard even if each A_i and B_i has the same size.
- We provide a weak cross composition of dimension 2 from this version into VERTEX COVER.
- Assumptions: all the input instances have the same k, each color class has size n in every input instance, $t = s^2$.

Create s copies of the left side and s copies of the right side. $N = s \cdot 2kn$

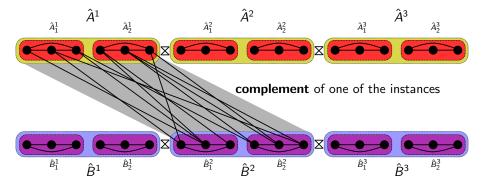




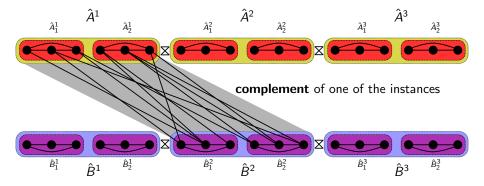
Embed s^2 instances into s^2 pairs of the sides.



Ask for an independent set of size 2k; equivalently, a vertex cover of size N - 2k.



Edges on the sides ensure choosing one instance and respecting colors. Edges originating in this instance ensure that the instance is solved.



• Parameter in the output instance is $N - 2k = t^{1/2} \cdot 2kn - 2k$, which means that the weak composition has dimension 2.

- Parameter in the output instance is $N 2k = t^{1/2} \cdot 2kn 2k$, which means that the weak composition has dimension 2.
- Hence, there is no kernel with $\mathcal{O}(k^{2-\epsilon})$ bits for VC.

- Parameter in the output instance is $N 2k = t^{1/2} \cdot 2kn 2k$, which means that the weak composition has dimension 2.
- Hence, there is no kernel with $\mathcal{O}(k^{2-\epsilon})$ bits for VC.
- Reduction from VC to FVS: add a degree-2 vertex to every edge, thus creating a triangle.

- Parameter in the output instance is $N 2k = t^{1/2} \cdot 2kn 2k$, which means that the weak composition has dimension 2.
- Hence, there is no kernel with $\mathcal{O}(k^{2-\epsilon})$ bits for VC.
- \bullet Reduction from VC to FVS: add a degree-2 vertex to every edge, thus creating a triangle.
- Hence also FVS does not admit a $\mathcal{O}(k^{2-\epsilon})$ kernel.

- Parameter in the output instance is $N 2k = t^{1/2} \cdot 2kn 2k$, which means that the weak composition has dimension 2.
- Hence, there is no kernel with $\mathcal{O}(k^{2-\epsilon})$ bits for VC.
- \bullet Reduction from VC to FVS: add a degree-2 vertex to every edge, thus creating a triangle.
- Hence also FVS does not admit a $\mathcal{O}(k^{2-\epsilon})$ kernel.
- For more $\mathcal{O}(k^{d-\epsilon})$ lower bounds, see the book.

• Compression vs. Kernelization

- Compression vs. Kernelization
 - VC has kernel with O(k) vertices and $O(k^2)$ edges. What about FVS?

- Compression vs. Kernelization
 - VC has kernel with O(k) vertices and $O(k^2)$ edges. What about FVS?
 - Is compositionality the only reason why polynomial kernelization is infeasible?

- Compression vs. Kernelization
 - VC has kernel with O(k) vertices and $O(k^2)$ edges. What about FVS?
 - Is compositionality the only reason why polynomial kernelization is infeasible?
 - Can we find a sensible problem where kernelization and compression are provable different?

- Compression vs. Kernelization
 - VC has kernel with O(k) vertices and $O(k^2)$ edges. What about FVS?
 - Is compositionality the only reason why polynomial kernelization is infeasible?
 - Can we find a sensible problem where kernelization and compression are provable different?
- Completeness theory for kernelization.

- Compression vs. Kernelization
 - VC has kernel with O(k) vertices and $O(k^2)$ edges. What about FVS?
 - Is compositionality the only reason why polynomial kernelization is infeasible?
 - Can we find a sensible problem where kernelization and compression are provable different?
- Completeness theory for kernelization.
 - Hermelin, Kratsch, Sołtys, Wahlström, Wu; IPEC 2013.

- Compression vs. Kernelization
 - VC has kernel with O(k) vertices and $O(k^2)$ edges. What about FVS?
 - Is compositionality the only reason why polynomial kernelization is infeasible?
 - Can we find a sensible problem where kernelization and compression are provable different?
- Completeness theory for kernelization.
 - Hermelin, Kratsch, Sołtys, Wahlström, Wu; IPEC 2013.
- Turing kernelization

- Compression vs. Kernelization
 - VC has kernel with O(k) vertices and $O(k^2)$ edges. What about FVS?
 - Is compositionality the only reason why polynomial kernelization is infeasible?
 - Can we find a sensible problem where kernelization and compression are provable different?
- Completeness theory for kernelization.
 - Hermelin, Kratsch, Sołtys, Wahlström, Wu; IPEC 2013.
- Turing kernelization
 - Turing kernel is a polynomial-time algorithm with an access to an oracle that resolves kernels.

- Compression vs. Kernelization
 - VC has kernel with O(k) vertices and $O(k^2)$ edges. What about FVS?
 - Is compositionality the only reason why polynomial kernelization is infeasible?
 - Can we find a sensible problem where kernelization and compression are provable different?
- Completeness theory for kernelization.
 - Hermelin, Kratsch, Sołtys, Wahlström, Wu; IPEC 2013.
- Turing kernelization
 - Turing kernel is a polynomial-time algorithm with an access to an oracle that resolves kernels.
 - How to show infeasibility of Turing kernelization?

Exercise 15.4, all the remaining points. Exercises 15.1 and 15.5.

Tikz faces based on a code by Raoul Kessels, http://www.texample.net/tikz/examples/emoticons/,

under Creative Commons Attribution 2.5 license (CC BY 2.5)