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QOutline

@ Goal: how to prove that for some problems polynomial kernels
do not exist?

o Part 1:

o Introduction of the (cross)-composition framework.
e Basic example.
o Part 2:

e PPT reductions.
o Case study of several cross-compositions.
o Weak compositions.
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In the previous episode...

@ Composition: an algorithm composing many instances into one
instance simulating their OR.
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maximum size of an input instance.
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In the previous episode...

o Composition: an algorithm composing many instances into one
instance simulating their OR.

e The new instance has parameter bounded polynomially in the
maximum size of an input instance.
@ Composition+Compression gives OR-Distillation

@ OR-Distillation of an NP-hard language contradicts
coNP C NP /poly.
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In the previous episode...

o Composition: an algorithm composing many instances into one
instance simulating their OR.

e The new instance has parameter bounded polynomially in the
maximum size of an input instance.
@ Composition+Compression gives OR-Distillation
@ OR-Distillation of an NP-hard language contradicts
coNP C NP/poly.

@ Corollary: To show no-poly-kernel it suffices to construct a
composition algorithm.
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In the previous episode...

Cross-composition

An unparameterized problem Q cross-composes into a parameterized
problem L, if there exists a polynomial equivalence relation R and an
algorithm that, given R-equivalent strings xi, X2, ..., X¢, in time
poly (t+ Y_i_; |xi|) produces one instance (y, k*) such that

o (y,k*) e Liff x; € Q for at least one j = 1,2,...,t,

o k* = poly (log t + maxi_; |x;|).

Cross-composition theorem Bodlaender et al.; STACS 2011, SIDMA 2014

If some NP-hard problem @ cross-composes into L, then L does not
admit a polynomial compression into any language R, unless
NP C coNP /poly.
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@ ldea: Hardness of kernelization can be transferred via
reductions, similarly to NP-hardness.

Michat Pilipczuk Kernelization lower bounds, part 2



@ ldea: Hardness of kernelization can be transferred via
reductions, similarly to NP-hardness.

Polynomial parameter transformation (PPT)

A polynomial parameter transformation from a parameterized

problem P to a parameterized problem @ is a polynomial-time
algorithm that transforms a given instance (x, k) of P into an
equivalent instance (y, k') of @ such that k" = poly(k).

Michat Pilipczuk Kernelization lower bounds, part 2



PPTs: properties

Observation

If problem P PPT-reduces to @, and P does not admit a polynomial
compression algorithm (into any language R), then neither does Q.
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PPTs: properties

Observation

If problem P PPT-reduces to @, and P does not admit a polynomial
compression algorithm (into any language R), then neither does Q.

@ Proof: Compose the PPT-reduction with the assumed
compression for Q.
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Application 2: STEINER TREE

STEINER TREE

Input:

Parameter:
Question:

Graph G with designated terminals T C V/(G),
and an integer k

k+|T|

Is there a set X C V(G) \ T, such that |X| < k
and G[T U X] is connected?
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Application 2: STEINER TREE

STEINER TREE

Input: Graph G with designated terminals T C V/(G),
and an integer k

Parameter: k + |T|

Question:  Is there a set X C V(G) \ T, such that |X| < k
and G[T U X] is connected?

@ Follows from a PPT from SET COVER par. by |U|.
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Application 2: STEINER TREE

STEINER TREE

Input: Graph G with designated terminals T C V/(G),
and an integer k

Parameter: k + |T|

Question:  Is there a set X C V(G) \ T, such that |X| < k
and G[T U X] is connected?

e Follows from a PPT from SET COVER par. by |U].

@ But we will present an alternative approach.
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The pivot problem technique

@ Introduce an simpler problem P, which is almost trivially
compositional.
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The pivot problem technique

@ Introduce an simpler problem P, which is almost trivially
compositional.

@ Then design a PPT from P to the target problem.
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The pivot problem technique

@ Introduce an simpler problem P, which is almost trivially
compositional.

@ Then design a PPT from P to the target problem.

@ Move the weight of the proof to the transformation and the
actual definition of P.
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The pivot problem technique

@ Introduce an simpler problem P, which is almost trivially
compositional.

@ Then design a PPT from P to the target problem.

@ Move the weight of the proof to the transformation and the
actual definition of P.

@ ldea: Extract the essence of the problem.
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COLOURFUL GRAPH MOTIF

Input: Graph G and a colouring function
C:V(G)—{1,2,...,k}

Parameter: k

Question:  Does there exists a connected subgraph H of G
containing exactly one vertex of each colour?
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COLOURFUL GRAPH MOTIF — example
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COLOURFUL GRAPH MOTIF — example
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About CGM

@ Introduced by Fellows et al. (ICALP 2007, JCSS 2011).
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About CGM
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@ Interesting FPT algorithms for various variants using the
algebraic approach.

@ Trivial composition algorithm: take the disjoint union of
instances, reuse colors.
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About CGM

@ Introduced by Fellows et al. (ICALP 2007, JCSS 2011).

@ NP-hard even on trees.

@ Interesting FPT algorithms for various variants using the
algebraic approach.

@ Trivial composition algorithm: take the disjoint union of
instances, reuse colors.

@ Hence, CGM does not have a polykernel unless
coNP C NP/poly.
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About CGM

@ Introduced by Fellows et al. (ICALP 2007, JCSS 2011).
@ NP-hard even on trees.

@ Interesting FPT algorithms for various variants using the
algebraic approach.

@ Trivial composition algorithm: take the disjoint union of
instances, reuse colors.

@ Hence, CGM does not have a polykernel unless
coNP C NP /poly.

@ Now: PPT-reduction from CGM to ST.
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From CGM to ST
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From CGM to ST

Attach a terminal to every colour class

Give budget k for Steiner nodes
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From CGM to ST

Attach a terminal to every colour class

Give budget k for Steiner nodes
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Wrapping up

@ CGM does not admit a polynomial kernel, unless
coNP C NP /poly.
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Wrapping up

@ CGM does not admit a polynomial kernel, unless
coNP C NP /poly.

@ CGM PPT-reduces to STEINER TREE par. by k + |T|.
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Wrapping up

@ CGM does not admit a polynomial kernel, unless
coNP C NP /poly.

@ CGM PPT-reduces to STEINER TREE par. by k + |T|.

@ Hence STEINER TREE par. by k + | T| does not admit a
polynomial kernel, unless coNP C NP /poly.
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Application 3: SET COVER par. by |U]

Input:
Parameter:
Question:

Universe U, a family of subsets 7 C 2V, integer k
|U|

Is there a subfamily G C F, |G| < k,

such that | JG = U?
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Application 3: SET COVER par. by |U]

Input: Universe U, a family of subsets 7 C 2V, integer k
Parameter: |U|
Question: s there a subfamily G C F, |G| < k,

such that | JG = U?

e Convention: We view it as a bipartite graph with one side
(blue) trying to dominate the other one (red).

Michat Pilipczuk Kernelization lower bounds, part 2



Application 3: SET COVER par. by |U]

Input: Universe U, a family of subsets 7 C 2V, integer k
Parameter: |U|
Question: s there a subfamily G C F, |G| < k,

such that | JG = U?

@ Convention: We view it as a bipartite graph with one side
(blue) trying to dominate the other one (red).

e Wlog k<|U|.
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COLOURFUL SET COVER

COLOURFUL SET COVER

Input: Universe U and families Fy, Fo, ..., Fix C 2Y
Parameter: |U|+ k
Question: Is there a family G containing exactly one set

from each family F;, such that [ JG = U?

Michat Pilipczuk Kernelization lower bounds, part 2



Equivalence of the problems

e SC SPPT CSC:
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Equivalence of the problems

e SC SPPT CSC:
e Put F; = F for every i.
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Equivalence of the problems

e SC SPPT CSC:
o Put F; = F for every i.

e CSC SPPT SC:
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Equivalence of the problems

e SC SPPT CSC:
o Put F; = F for every i.

e CSC SPPT SC:

o Add k elements ey, e, ..., ek; include e; in every set from F;.
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Equivalence of the problems

e SC SPPT CSC:
o Put F; = F for every i.
e CSC SPPT SC:

o Add k elements eg, e, ..., e; include ¢; in every set from F;j.
o Then take F = |J F.
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Equivalence of the problems

e SC SPPT CSC:
o Put F; = F for every i.

e CSC SPPT SC:

o Add k elements eg, e, ..., e; include ¢; in every set from F;j.
o Then take F = |J Fi.

@ We will cross-compose COLOURFUL SET COVER into itself.
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Equivalence of the problems

e SC SPPT CSC:
o Put F; = F for every i.

e CSC SPPT SC:

o Add k elements eg, e, ..., e; include ¢; in every set from F;j.
o Then take F = |J Fi.

@ We will cross-compose COLOURFUL SET COVER into itself.

@ Assumption: the same universe U, the same k, and t being a
power of 2.
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Cross-composing into COLOURFUL SET

Input: Instances (U, (F})1<j<k)

Output: Instance (U™, (.Fj*)lgjgk)
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Cross-composing into COLOURFUL SET COVER

v )

Input: Instances (U, (F})1<j<k)

Output: Instance (U™, (.Fj*)lgjgk)
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Cross-composing into COLOURFUL SET COVER

1 2 3 4 5 k
A | A | B | 8|7 Fi
77 73 F3 72 72 Fi

seouwjsur 1

v )

Input: Instances (U, (F})1<j<k)

Output: Instance (U*, (-F;)lgjgk)
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Cross-composing into COLOURFUL SET COVER

1 2 3 4 5 k
| A | B | 8|7 Fi
e] o
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Problem:
Ensure consistent instance choice
U (choices from the same row)

Input: Instances (U, (F})1<j<k)

Output: Instance (U*, (-F;)lgjgk)
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Cross-composing into COLOURFUL SET COVER

1 2 3 4 5 k

A | A | B | 8|7 Fi
| 7B | B | 7| R Fr
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Problem:
Ensure consistent instance choice
U (choices from the same row)

Input: Instances (U, (F})1<j<k)

Output: Instance (U*, (-F;)lgjgk)

Michat Pilipczuk Kernelization lower bounds, part 2



Cross-composing into COLOURFUL SET COVER

1 2 3 4 5 k

A | A | B | 8|7 Fi
72 F2 72 F2 F2 2

lo 2o 30 ‘o 5o ko -

................................................ c

&

o

=]

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 2

&

Problem:

Ensure consistent instance choice
(choices from the same row)

Solution:
Equality gadgets

Input: Instances (U, (F})1<j<k)

Output: Instance (U*, (-F;)lgjgk)
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Cross-composing into COLOURFUL SET COVER

1 2 3 4 5 k
A | A | B | 8|7 Fi
77 73 F3 72 72 Fi

seouwjsur 1

DDDDD [ U ] Vi<j<jp<k

Input: Instances (U, (F})1<j<k)

Output: Instance (U*, (-F;)lgjgk)

Michat Pilipczuk Kernelization lower bounds, part 2



Cross-composing into COLOURFUL SET COVER

1 2 3 4 5 k
A | A | B | 8|7 Fi
77 73 F3 72 72 Fi

seouwjsur 1

(3,4

)
Vi<ji<p<k
DDDD [ U ] makélagajdzget

1

log t pairs Input: Instances (U, (F})1<j<k)

Output: Instance (U*, (-F;)lgjgk)
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Cross-composing into COLOURFUL SET COVER

seouwjsur 1

(3,4)
o} . .
D [| D D [ U ] ; 1magkéla Zajdzgegt *

log t pairs Input: Instances (U, (F})1<j<k)

V; add bin(i) to sets from F} Output: Instance (U™, (F")1<j<k)
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Cross-composing into COLOURFUL SET COVER

1 2 3 4 5 k
Fi 7 F3 7 Fr
77 73 F3 72 Fi

(3,4

000 e

seouwjsur 1

Vi<jp<p<k
make a gadget

log t pairs Input: Instances (U, (F})1<j<k)

V; add bin(i) to sets from F} Output: Instance (U™, (F}")

V; add bin(/) to sets from }"';

Michat Pilipczuk Kernelization lower bounds, part 2
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Cross-composing into COLOURFUL SET COVER

seouwjsur 1

)
Eq. gadgets are covered
U o
Instance choices are equal

log t pairs Input: Instances (U, (F})1<j<k)

—

EEE e
QOO J »

V; add bin(i) to sets from F} Output: Instance (U™, (F")1<j<k)

V; add bin(/) to sets from }"';
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Cross-composing into COLOURFUL SET COVER

(3,4

DOEID ¢

4 5 k
A Fi
| A Fr )
........................ z
By
=]
,,,,,,,,,,,,,,,,,,,,,,,, 2
8
New parameter:
U U] + O(K? log t)

1

log t pairs
V; add bin(i) to sets from ]-'é

V; add bin(/) to sets from }"';

Input: Instances (U, (F})1<j<k)

Output: Instance (U*, (-F;)lgjgk)
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Wrapping up

@ SC and CSC are equivalent wrt. PPTs.
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@ CSC does not admit a polynomial compression, unless
NP C coNP /poly.
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Wrapping up

@ SC and CSC are equivalent wrt. PPTs.

@ CSC does not admit a polynomial compression, unless
NP C coNP /poly.

@ So neither does SC.
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Wrapping up

@ SC and CSC are equivalent wrt. PPTs.

@ CSC does not admit a polynomial compression, unless
NP C coNP /poly.

@ So neither does SC.

@ Note: parameterization of SET COVER by |F| also does not
admit a polynomial compression.
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Wrapping up

@ SC and CSC are equivalent wrt. PPTs.

@ CSC does not admit a polynomial compression, unless
NP C coNP /poly.
@ So neither does SC.

e Note: parameterization of SET COVER by |F| also does not
admit a polynomial compression.

e The composition is quite different.
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Structural parameters

o ldea: Parameterize the problem by a quantitative measure of
structure of the graph, rather than intended solution size.
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Structural parameters

o ldea: Parameterize the problem by a quantitative measure of
structure of the graph, rather than intended solution size.

o Example: treewidth parameterizations
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Structural parameters

o ldea: Parameterize the problem by a quantitative measure of
structure of the graph, rather than intended solution size.

e Example: treewidth parameterizations

@ From kernelization point of view: work of Bodlaender, Jansen,
and Kratsch.
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Structural parameters

o ldea: Parameterize the problem by a quantitative measure of
structure of the graph, rather than intended solution size.

e Example: treewidth parameterizations

@ From kernelization point of view: work of Bodlaender, Jansen,
and Kratsch.

@ Original motivation of cross-composition.
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Application 4: CLIQUE par. by vertex cover

CLIQUE/VC
Input: Graph G, a vertex cover X of G, integer k
Parameter: |X|
Question: Is there a clique of size k in G7
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Application 4: CLIQUE par. by vertex cover

CLIQUE/VC
Input: Graph G, a vertex cover X of G, integer k
Parameter: |X|
Question: Is there a clique of size k in G7

e Wlog k<|X|+1,
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Application 4: CLIQUE par. by vertex cover

CLIQUE/VC
Input: Graph G, a vertex cover X of G, integer k
Parameter: |X|
Question: Is there a clique of size k in G7

o Wlog k< |X|+1,
@ Trivially FPT.
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Application 4: CLIQUE par. by vertex cover

CLIQUE/VC
Input: Graph G, a vertex cover X of G, integer k
Parameter: |X|
Question: Is there a clique of size k in G7

o Wlog k< |X|+1,
o Trivially FPT.

@ We make a cross-composition from the standard CLIQUE
problem.
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Application 4: CLIQUE par. by vertex cover

CLIQUE/VC
Input: Graph G, a vertex cover X of G, integer k
Parameter: |X|
Question: Is there a clique of size k in G7

o Wlog k< |X|+1,
o Trivially FPT.

@ We make a cross-composition from the standard CLIQUE
problem.

@ Assume the same number of vertices n and the same target size
of the clique k.

Michat Pilipczuk Kernelization lower bounds, part 2



Cross-composing into CLIQUE/VC

Input: Instances (G;, k)

Output: Instance (G, X, k™)
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Cross-composing into CLIQUE/VC

Input: Instances (G;, k)

. Output: Instance (G, X, k™)
t vertices

’ |

Size constraints force us
to take one vertex from /.
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Cross-composing into CLIQUE/VC

Input: Instances (G;, k)
‘ l ’ Output: Instance (G, X, k™)

A t vertices

Size constraints force us
to take one vertex from /.

Neighbourhood of i-th vertex
from [ acts as instance (G;j, k).
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Cross-composing into CLIQUE/VC

/

A t vertices

Input: Instances (G;, k)

Output: Instance (G, X, k™)

Size constraints force us
to take one vertex from /.

Neighbourhood of i-th vertex
from [ acts as instance (G;j, k).

Problem:
Design a 'universal’ modulator X.
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Cross-composing into CLIQUE/VC

Input: Instances (G;, k)

Output: Instance (G, X, k™)

All connections are present
1 * ,,,,,,,,,,,,,,,,,, % .. /’ except ones in the same row/column.
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Cross-composing into CLIQUE/VC

Input: Instances (G;, k)

Output: Instance (G, X, k™)

L S o
s

K| &N e & W

. J
1 2 3 4 n (g) triples
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Cross-composing into CLIQUE/VC

Input: Instances (G;, k)

Output: Instance (G, X, k™)

all

AP

;))‘ @*jﬁ(a,b)
S [ ews

o oo oo )

(. J
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Cross-composing into CLIQUE/VC

Input: Instances (G;, k)
Output: Instance (G, X, k™)

all —a

)

AP

L I
€l ok o o»| | FEP

P2 I & W

. J
1 2 3 4 n (g) triples
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Cross-composing into CLIQUE/VC

Input: Instances (G;, k)

Output: Instance (G, X, k™)

all —-a —-b

AP

s A I A
S O

P 272 BV B TRy

— L )
1 2 3 4 n (g) triples
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Cross-composing into CLIQUE/VC

Input: Instances (G;, k)

’ Output: Instance (G, X, k™)

all —-a —-b

S S
| T

¥ e

N oo oo )

(. J
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Cross-composing into CLIQUE/VC

Input: Instances (G;, k)

’ Output: Instance (G, X, k™)
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Cross-composing into CLIQUE/VC

Input: Instances (G;, k)

’ Output: Instance (G, X, k™)

all —-a —-b

AP
« % b
o| |e%

¥ e

N oo oo )

-

J

Michat Pilipczuk

n (g) triples

Kernelization lower bounds, part 2

(a, b)
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Cross-composing into CLIQUE/VC

Input: Instances (G;, k)

’ Output: Instance (G, X, k™)

all —-a —-b

AP

A.

.. | s
Jewwx 0| T
Y R
p & “““ vv “““ V2 % & W

1 2 3 4 n (3) triples
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(a, b)
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Cross-composing into CLIQUE/VC

all

—a —=b

)

A.

s

SRS A
B
Y R
p & “““ vv “““ V2 % & W

1 2 3 4 n (3) triples

Michat Pilipczuk

Kernelization lower bounds, part 2

Input: Instances (G;, k)

’ Output: Instance (G, X, k™)

(a, b)
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Cross-composing into CLIQUE/VC

’ Requested size of the clique:

k*:k+(;)+1

all —-a —-b

S SR
| € ¥

¥ e

N oo oo )

(. J
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Cross-composing into CLIQUE/VC

i-th vertex is chosen from /
=
V(a, b) ¢ E(G;), columns a and b
cannot be chosen simultaneously

all —-a —-b

AP
.

K| E N e & W

. J
1 2 3 4 n (g) triples
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Cross-composing into CLIQUE/VC

| ”a“::;ar:‘gg;

. (T » L
2| & XX 444444 * » (G b
| ek o op | | FED

K| & vv “““ ¥ s. = W %J
S " (5) ot
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(a, b)
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Conclusion of the case study

@ Making compositions is highly non-trivial.
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Conclusion of the case study

@ Making compositions is highly non-trivial.
@ Requires good understanding of the problem.

@ Intuitively, what we exploit is choice. We need to identify it,
and build a technical construction on top of it.

Michat Pilipczuk Kernelization lower bounds, part 2



Conclusion of the case study

@ Making compositions is highly non-trivial.
@ Requires good understanding of the problem.

@ Intuitively, what we exploit is choice. We need to identify it,
and build a technical construction on top of it.

@ Often it requires a lot of gadgeteering...

Michat Pilipczuk Kernelization lower bounds, part 2



Conclusion of the case study

Making compositions is highly non-trivial.

Requires good understanding of the problem.

Intuitively, what we exploit is choice. We need to identify it,
and build a technical construction on top of it.

Often it requires a lot of gadgeteering...
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Conclusion of the case study

Making compositions is highly non-trivial.

Requires good understanding of the problem.

Intuitively, what we exploit is choice. We need to identify it,
and build a technical construction on top of it.

@ Often it requires a lot of gadgeteering...
@ ... experience ...
@ ... tricks that | did not mention ...
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Conclusion of the case study

Making compositions is highly non-trivial.

Requires good understanding of the problem.

Intuitively, what we exploit is choice. We need to identify it,
and build a technical construction on top of it.

Often it requires a lot of gadgeteering...

°
@ ... experience ...

@ ... tricks that | did not mention ...
°

or clever ideas.

Michat Pilipczuk Kernelization lower bounds, part 2



Weak compositions

@ We have seen an O(k?) kernel for FEEDBACK VERTEX SET
(bitsize O(k? log k)).
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@ Weak compositions: proving lower bounds on kernelization
complexity for problems that do have polynomial kernels.
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Weak compositions

@ We have seen an O(k?) kernel for FEEDBACK VERTEX SET
(bitsize O(k? log k)).

@ Can we prove that a subquadratic kernel is unlikely?

e YES

o Weak compositions: proving lower bounds on kernelization
complexity for problems that do have polynomial kernels.

@ First results by Dell and van Melkebeek (STOC 2010), the
framework here by (Dell, Marx; Hermelin, Wu; SODA 2012).
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Back to Fortnow and Santhanam

@ OR-distillation of t = k199 instances of size k into one instance
with bitsize k7 is unlikely.
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sublinear in t.
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Back to Fortnow and Santhanam

@ OR-distillation of t = k1990 instances of size k into one instance
with bitsize k7 is unlikely.

@ Well, it should be unlikely even if we required any bitsize
sublinear in t.

@ If one examines the proof, then one can exclude OR-distillation
into bitsize O(t'~¢ - k¢), for any constants € > 0 and c.
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Back to Fortnow and Santhanam

@ OR-distillation of t = k1990 instances of size k into one instance
with bitsize k7 is unlikely.

@ Well, it should be unlikely even if we required any bitsize
sublinear in t.

@ If one examines the proof, then one can exclude OR-distillation
into bitsize O(t'~¢ - k¢), for any constants ¢ > 0 and c.

@ Let's look again at the proof of the cross-composition Theorem.
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Cross-composition proof, recap

k = max|x;|, logt= O(k)
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Cross-composition proof, recap

k = max|x;|, logt= O(k)
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Weak compositions, formally

@ It seems that a composition with output bitsize dependence on t
being O(t'/9) should exclude compression into bitsize O(k~°).

Michat Pilipczuk Kernelization lower bounds, part 2



Weak compositions, formally

@ It seems that a composition with output bitsize dependence on t
being O(t'/9) should exclude compression into bitsize O(k~¢).

Weak cross-composition

An unparameterized problem @ weakly cross-composes into a
parameterized problem L, if there exists a polynomial equivalence
relation R, a real constant d > 1, and an algorithm that, given
R-equivalent strings xi, X2, . . . , X;, in time poly (t +50 |x,-|)
produces one instance (y, k*) such that

o (y,k*) € Liff x; € Q for at least one j = 1,2,...,t,

o k* = tl/d+o) . poly (maxt_; |xi|).
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Weak cross-composition theorem

@ Constant d will be called the dimension of the weak
cross-composition.
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Weak cross-composition theorem

@ Constant d will be called the dimension of the weak
cross-composition.

Weak cross-composition theorem

Suppose some NP-hard problem @ admits a weak cross-composition
into L with dimension d. Suppose further that L admits a polynomial
compression with bitsize O(k9~¢), for some ¢ > 0. Then

NP C coNP/poly.
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Weak cross-composition theorem

@ Constant d will be called the dimension of the weak
cross-composition.

Weak cross-composition theorem

Suppose some NP-hard problem @ admits a weak cross-composition
into L with dimension d. Suppose further that L admits a polynomial
compression with bitsize O(k9~¢), for some ¢ > 0. Then

NP C coNP/poly.

@ Note: Also called cross-composition of bounded cost by
Bodlaender et al. (SIDMA, 2014).
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Lower bound for VERTEX COVER

@ Using weak cross-composition we now prove that VERTEX
COVER does not admit a kernel with bitsize O(k*~¢), for any
¢ > 0. (unless...)
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COVER does not admit a kernel with bitsize O(k*~¢), for any
€ > 0. (unless...)

@ But it had a linear kernel!?
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Lower bound for VERTEX COVER

@ Using weak cross-composition we now prove that VERTEX
COVER does not admit a kernel with bitsize O(k*~¢), for any
€ > 0. (unless...)

o But it had a linear kernel!?

@ VERTEX COVER has a kernel with 2k vertices, which therefore
requires O(k?) bits to be encoded.
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Lower bound for VERTEX COVER

@ Using weak cross-composition we now prove that VERTEX
COVER does not admit a kernel with bitsize O(k*~¢), for any
€ > 0. (unless...)

@ But it had a linear kernel!?

@ VERTEX COVER has a kernel with 2k vertices, which therefore
requires O(k?) bits to be encoded.

@ Crux: choose an appropriate problem @ to start with.
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MULTICOLORED BICLIQUE

MULTICOLORED BICLIQUE
Input: Bipartite graph H with bipartition AW B,
Whel’eA:A]_H‘J...H'JAk, B:B]_L‘!‘JH‘JB/(
Question: s there a biclique of size Kj  in H that
contains one vertex from each A; and each B;?
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MULTICOLORED BICLIQUE

MULTICOLORED BICLIQUE
Input: Bipartite graph H with bipartition AW B,
Whel’eA:A]_H‘J...H'JAk, B:B]_L‘!‘JH‘JB/(
Question: s there a biclique of size Kj  in H that
contains one vertex from each A; and each B;?

@ MULTICOLORED BICLIQUE is NP-hard even if each A; and B;
has the same size.
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MULTICOLORED BICLIQUE
Input: Bipartite graph H with bipartition AW B,
Whel’eA:A]_H‘J...H'JAk, B:B]_L‘!‘JH‘JB/(
Question: s there a biclique of size Kj  in H that
contains one vertex from each A; and each B;?

@ MULTICOLORED BICLIQUE is NP-hard even if each A; and B;
has the same size.

@ We provide a weak cross composition of dimension 2 from this
version into VERTEX COVER.
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MULTICOLORED BICLIQUE

MULTICOLORED BICLIQUE
Input: Bipartite graph H with bipartition AW B,
Whel’eA:A]_H‘J...H'JAk, B:B]_L‘!‘JH‘JB/(
Question: s there a biclique of size Kj  in H that
contains one vertex from each A; and each B;?

@ MULTICOLORED BICLIQUE is NP-hard even if each A; and B;
has the same size.

@ We provide a weak cross composition of dimension 2 from this
version into VERTEX COVER.

@ Assumptions: all the input instances have the same k, each

color class has size n in every input instance, t = s°.
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Composition

Create s copies of the left side and s copies of the right side.
N =s-2kn

Al A2 A3

2 2
Al A

A
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Composition

Embed s? instances into s? pairs of the sides.
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Composition

Ask for an independent set of size 2k;
equivalently, a vertex cover of size N — 2k.
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Composition

Edges on the sides ensure choosing one instance and respecting colors.
Edges originating in this instance ensure that the instance is solved.

Al Al A2 22 A3 A3
Al A A A3 A A3
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Wrapping up

@ Parameter in the output instance is N — 2k = t¥/2 - 2kn — 2k,
which means that the weak composition has dimension 2.
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Wrapping up

o Parameter in the output instance is N — 2k = t¥/2 . 2kn — 2k,
which means that the weak composition has dimension 2.

@ Hence, there is no kernel with O(k?~¢) bits for VC.
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Wrapping up

o Parameter in the output instance is N — 2k = t¥/2 . 2kn — 2k,
which means that the weak composition has dimension 2.

@ Hence, there is no kernel with O(k®~¢) bits for VC.

@ Reduction from VC to F'VS: add a degree-2 vertex to every
edge, thus creating a triangle.
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Wrapping up

Parameter in the output instance is N — 2k = t'/2 . 2kn — 2k,
which means that the weak composition has dimension 2.

Hence, there is no kernel with O(k*>~) bits for VC.

Reduction from VC to FVS: add a degree-2 vertex to every
edge, thus creating a triangle.

Hence also F'VS does not admit a O(k*>~) kernel.
For more O(k?7¢) lower bounds, see the book.
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Further perspectives

@ Compression vs. Kernelization
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Further perspectives

@ Compression vs. Kernelization

o VC has kernel with O(k) vertices and O(k?) edges.
What about F'VS?

e Is compositionality the only reason why polynomial kernelization
is infeasible?
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Further perspectives

@ Compression vs. Kernelization
o VC has kernel with O(k) vertices and O(k?) edges.
What about FVS?
e Is compositionality the only reason why polynomial kernelization
is infeasible?
e Can we find a sensible problem where kernelization and
compression are provable different?
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Further perspectives

@ Compression vs. Kernelization

o VC has kernel with O(k) vertices and O(k?) edges.
What about F'VS?

e Is compositionality the only reason why polynomial kernelization
is infeasible?

e Can we find a sensible problem where kernelization and
compression are provable different?
@ Completeness theory for kernelization.
e Hermelin, Kratsch, Sottys, Wahlstrom, Wu; IPEC 2013.
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e Hermelin, Kratsch, Sottys, Wahlstrom, Wu; IPEC 2013.
@ Turing kernelization
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Further perspectives

@ Compression vs. Kernelization

o VC has kernel with O(k) vertices and O(k?) edges.
What about F'VS?

e Is compositionality the only reason why polynomial kernelization
is infeasible?

e Can we find a sensible problem where kernelization and
compression are provable different?

@ Completeness theory for kernelization.
e Hermelin, Kratsch, Sottys, Wahlstrom, Wu; IPEC 2013.
@ Turing kernelization

e Turing kernel is a polynomial-time algorithm with an access to
an oracle that resolves kernels.
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Further perspectives

@ Compression vs. Kernelization

o VC has kernel with O(k) vertices and O(k?) edges.
What about F'VS?

e Is compositionality the only reason why polynomial kernelization
is infeasible?

e Can we find a sensible problem where kernelization and
compression are provable different?
@ Completeness theory for kernelization.
e Hermelin, Kratsch, Sottys, Wahlstrom, Wu; IPEC 2013.
@ Turing kernelization

e Turing kernel is a polynomial-time algorithm with an access to
an oracle that resolves kernels.

e How to show infeasibility of Turing kernelization?
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Exercises

Exercise 15.4, all the remaining points.
Exercises 15.1 and 15.5.

Tikz faces based on a code by Raoul Kessels, http://www.texample.net/tikz/examples/emoticons/,

under Creative Commons Attribution 2.5 license (CC BY 2.5)
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