
Lower bounds for polynomial kernelization
Part 2

Micha l Pilipczuk

Institutt for Informatikk, Universitetet i Bergen

August 20th, 2014

Micha l Pilipczuk Kernelization lower bounds, part 2 1/33

Outline

Goal: how to prove that for some problems polynomial kernels
do not exist?

Part 1:

Introduction of the (cross)-composition framework.
Basic example.

Part 2:

PPT reductions.
Case study of several cross-compositions.
Weak compositions.

Micha l Pilipczuk Kernelization lower bounds, part 2 2/33

In the previous episode...

Composition: an algorithm composing many instances into one
instance simulating their OR.

The new instance has parameter bounded polynomially in the
maximum size of an input instance.

Composition+Compression gives OR-Distillation

OR-Distillation of an NP-hard language contradicts
coNP ⊆ NP/poly.

Corollary: To show no-poly-kernel it suffices to construct a
composition algorithm.

Micha l Pilipczuk Kernelization lower bounds, part 2 3/33

In the previous episode...

Composition: an algorithm composing many instances into one
instance simulating their OR.

The new instance has parameter bounded polynomially in the
maximum size of an input instance.

Composition+Compression gives OR-Distillation

OR-Distillation of an NP-hard language contradicts
coNP ⊆ NP/poly.

Corollary: To show no-poly-kernel it suffices to construct a
composition algorithm.

Micha l Pilipczuk Kernelization lower bounds, part 2 3/33

In the previous episode...

Composition: an algorithm composing many instances into one
instance simulating their OR.

The new instance has parameter bounded polynomially in the
maximum size of an input instance.

Composition+Compression gives OR-Distillation

OR-Distillation of an NP-hard language contradicts
coNP ⊆ NP/poly.

Corollary: To show no-poly-kernel it suffices to construct a
composition algorithm.

Micha l Pilipczuk Kernelization lower bounds, part 2 3/33

In the previous episode...

Composition: an algorithm composing many instances into one
instance simulating their OR.

The new instance has parameter bounded polynomially in the
maximum size of an input instance.

Composition+Compression gives OR-Distillation

OR-Distillation of an NP-hard language contradicts
coNP ⊆ NP/poly.

Corollary: To show no-poly-kernel it suffices to construct a
composition algorithm.

Micha l Pilipczuk Kernelization lower bounds, part 2 3/33

In the previous episode...

Composition: an algorithm composing many instances into one
instance simulating their OR.

The new instance has parameter bounded polynomially in the
maximum size of an input instance.

Composition+Compression gives OR-Distillation

OR-Distillation of an NP-hard language contradicts
coNP ⊆ NP/poly.

Corollary: To show no-poly-kernel it suffices to construct a
composition algorithm.

Micha l Pilipczuk Kernelization lower bounds, part 2 3/33

In the previous episode...

Cross-composition

An unparameterized problem Q cross-composes into a parameterized
problem L, if there exists a polynomial equivalence relation R and an
algorithm that, given R-equivalent strings x1, x2, . . . , xt , in time
poly

(
t +

∑t
i=1 |xi |

)
produces one instance (y , k?) such that

(y , k?) ∈ L iff xi ∈ Q for at least one i = 1, 2, . . . , t,

k? = poly (log t + maxti=1 |xi |).

Cross-composition theorem Bodlaender et al.; STACS 2011, SIDMA 2014

If some NP-hard problem Q cross-composes into L, then L does not
admit a polynomial compression into any language R , unless
NP ⊆ coNP/poly.

Micha l Pilipczuk Kernelization lower bounds, part 2 4/33

PPTs

Idea: Hardness of kernelization can be transferred via
reductions, similarly to NP-hardness.

Polynomial parameter transformation (PPT)

A polynomial parameter transformation from a parameterized
problem P to a parameterized problem Q is a polynomial-time
algorithm that transforms a given instance (x , k) of P into an
equivalent instance (y , k ′) of Q such that k ′ = poly(k).

Micha l Pilipczuk Kernelization lower bounds, part 2 5/33

PPTs

Idea: Hardness of kernelization can be transferred via
reductions, similarly to NP-hardness.

Polynomial parameter transformation (PPT)

A polynomial parameter transformation from a parameterized
problem P to a parameterized problem Q is a polynomial-time
algorithm that transforms a given instance (x , k) of P into an
equivalent instance (y , k ′) of Q such that k ′ = poly(k).

Micha l Pilipczuk Kernelization lower bounds, part 2 5/33

PPTs: properties

Observation

If problem P PPT-reduces to Q, and P does not admit a polynomial
compression algorithm (into any language R), then neither does Q.

Proof: Compose the PPT-reduction with the assumed
compression for Q.

Micha l Pilipczuk Kernelization lower bounds, part 2 6/33

PPTs: properties

Observation

If problem P PPT-reduces to Q, and P does not admit a polynomial
compression algorithm (into any language R), then neither does Q.

Proof: Compose the PPT-reduction with the assumed
compression for Q.

Micha l Pilipczuk Kernelization lower bounds, part 2 6/33

Application 2: Steiner Tree

Steiner Tree

Input: Graph G with designated terminals T ⊆ V (G),
and an integer k

Parameter: k + |T |
Question: Is there a set X ⊆ V (G) \ T , such that |X | ≤ k

and G [T ∪ X] is connected?

Follows from a PPT from Set Cover par. by |U |.
But we will present an alternative approach.

Micha l Pilipczuk Kernelization lower bounds, part 2 7/33

Application 2: Steiner Tree

Steiner Tree

Input: Graph G with designated terminals T ⊆ V (G),
and an integer k

Parameter: k + |T |
Question: Is there a set X ⊆ V (G) \ T , such that |X | ≤ k

and G [T ∪ X] is connected?

Follows from a PPT from Set Cover par. by |U |.

But we will present an alternative approach.

Micha l Pilipczuk Kernelization lower bounds, part 2 7/33

Application 2: Steiner Tree

Steiner Tree

Input: Graph G with designated terminals T ⊆ V (G),
and an integer k

Parameter: k + |T |
Question: Is there a set X ⊆ V (G) \ T , such that |X | ≤ k

and G [T ∪ X] is connected?

Follows from a PPT from Set Cover par. by |U |.
But we will present an alternative approach.

Micha l Pilipczuk Kernelization lower bounds, part 2 7/33

The pivot problem technique

Introduce an simpler problem P , which is almost trivially
compositional.

Then design a PPT from P to the target problem.

Move the weight of the proof to the transformation and the
actual definition of P .

Idea: Extract the essence of the problem.

Micha l Pilipczuk Kernelization lower bounds, part 2 8/33

The pivot problem technique

Introduce an simpler problem P , which is almost trivially
compositional.

Then design a PPT from P to the target problem.

Move the weight of the proof to the transformation and the
actual definition of P .

Idea: Extract the essence of the problem.

Micha l Pilipczuk Kernelization lower bounds, part 2 8/33

The pivot problem technique

Introduce an simpler problem P , which is almost trivially
compositional.

Then design a PPT from P to the target problem.

Move the weight of the proof to the transformation and the
actual definition of P .

Idea: Extract the essence of the problem.

Micha l Pilipczuk Kernelization lower bounds, part 2 8/33

The pivot problem technique

Introduce an simpler problem P , which is almost trivially
compositional.

Then design a PPT from P to the target problem.

Move the weight of the proof to the transformation and the
actual definition of P .

Idea: Extract the essence of the problem.

Micha l Pilipczuk Kernelization lower bounds, part 2 8/33

Colourful Graph Motif

Colourful Graph Motif

Input: Graph G and a colouring function
C : V (G)→ {1, 2, . . . , k}

Parameter: k
Question: Does there exists a connected subgraph H of G

containing exactly one vertex of each colour?

Micha l Pilipczuk Kernelization lower bounds, part 2 9/33

Colourful Graph Motif — example

Micha l Pilipczuk Kernelization lower bounds, part 2 10/33

Colourful Graph Motif — example

Micha l Pilipczuk Kernelization lower bounds, part 2 10/33

About CGM

Introduced by Fellows et al. (ICALP 2007, JCSS 2011).

NP-hard even on trees.

Interesting FPT algorithms for various variants using the
algebraic approach.

Trivial composition algorithm: take the disjoint union of
instances, reuse colors.

Hence, CGM does not have a polykernel unless
coNP ⊆ NP/poly.

Now: PPT-reduction from CGM to ST.

Micha l Pilipczuk Kernelization lower bounds, part 2 11/33

About CGM

Introduced by Fellows et al. (ICALP 2007, JCSS 2011).

NP-hard even on trees.

Interesting FPT algorithms for various variants using the
algebraic approach.

Trivial composition algorithm: take the disjoint union of
instances, reuse colors.

Hence, CGM does not have a polykernel unless
coNP ⊆ NP/poly.

Now: PPT-reduction from CGM to ST.

Micha l Pilipczuk Kernelization lower bounds, part 2 11/33

About CGM

Introduced by Fellows et al. (ICALP 2007, JCSS 2011).

NP-hard even on trees.

Interesting FPT algorithms for various variants using the
algebraic approach.

Trivial composition algorithm: take the disjoint union of
instances, reuse colors.

Hence, CGM does not have a polykernel unless
coNP ⊆ NP/poly.

Now: PPT-reduction from CGM to ST.

Micha l Pilipczuk Kernelization lower bounds, part 2 11/33

About CGM

Introduced by Fellows et al. (ICALP 2007, JCSS 2011).

NP-hard even on trees.

Interesting FPT algorithms for various variants using the
algebraic approach.

Trivial composition algorithm: take the disjoint union of
instances, reuse colors.

Hence, CGM does not have a polykernel unless
coNP ⊆ NP/poly.

Now: PPT-reduction from CGM to ST.

Micha l Pilipczuk Kernelization lower bounds, part 2 11/33

About CGM

Introduced by Fellows et al. (ICALP 2007, JCSS 2011).

NP-hard even on trees.

Interesting FPT algorithms for various variants using the
algebraic approach.

Trivial composition algorithm: take the disjoint union of
instances, reuse colors.

Hence, CGM does not have a polykernel unless
coNP ⊆ NP/poly.

Now: PPT-reduction from CGM to ST.

Micha l Pilipczuk Kernelization lower bounds, part 2 11/33

About CGM

Introduced by Fellows et al. (ICALP 2007, JCSS 2011).

NP-hard even on trees.

Interesting FPT algorithms for various variants using the
algebraic approach.

Trivial composition algorithm: take the disjoint union of
instances, reuse colors.

Hence, CGM does not have a polykernel unless
coNP ⊆ NP/poly.

Now: PPT-reduction from CGM to ST.

Micha l Pilipczuk Kernelization lower bounds, part 2 11/33

From CGM to ST

Attach a terminal to every colour class

Give budget k for Steiner nodes

Micha l Pilipczuk Kernelization lower bounds, part 2 12/33

From CGM to ST

Attach a terminal to every colour class

Give budget k for Steiner nodes

Micha l Pilipczuk Kernelization lower bounds, part 2 12/33

From CGM to ST

Attach a terminal to every colour class

Give budget k for Steiner nodes

Micha l Pilipczuk Kernelization lower bounds, part 2 12/33

Wrapping up

CGM does not admit a polynomial kernel, unless
coNP ⊆ NP/poly.

CGM PPT-reduces to Steiner Tree par. by k + |T |.
Hence Steiner Tree par. by k + |T | does not admit a
polynomial kernel, unless coNP ⊆ NP/poly.

Micha l Pilipczuk Kernelization lower bounds, part 2 13/33

Wrapping up

CGM does not admit a polynomial kernel, unless
coNP ⊆ NP/poly.

CGM PPT-reduces to Steiner Tree par. by k + |T |.

Hence Steiner Tree par. by k + |T | does not admit a
polynomial kernel, unless coNP ⊆ NP/poly.

Micha l Pilipczuk Kernelization lower bounds, part 2 13/33

Wrapping up

CGM does not admit a polynomial kernel, unless
coNP ⊆ NP/poly.

CGM PPT-reduces to Steiner Tree par. by k + |T |.
Hence Steiner Tree par. by k + |T | does not admit a
polynomial kernel, unless coNP ⊆ NP/poly.

Micha l Pilipczuk Kernelization lower bounds, part 2 13/33

Application 3: Set Cover par. by |U |

Set Cover

Input: Universe U , a family of subsets F ⊆ 2U , integer k
Parameter: |U |
Question: Is there a subfamily G ⊆ F , |G| ≤ k ,

such that
⋃
G = U?

Convention: We view it as a bipartite graph with one side
(blue) trying to dominate the other one (red).

W.l.o.g. k ≤ |U |.

Micha l Pilipczuk Kernelization lower bounds, part 2 14/33

Application 3: Set Cover par. by |U |

Set Cover

Input: Universe U , a family of subsets F ⊆ 2U , integer k
Parameter: |U |
Question: Is there a subfamily G ⊆ F , |G| ≤ k ,

such that
⋃
G = U?

Convention: We view it as a bipartite graph with one side
(blue) trying to dominate the other one (red).

W.l.o.g. k ≤ |U |.

Micha l Pilipczuk Kernelization lower bounds, part 2 14/33

Application 3: Set Cover par. by |U |

Set Cover

Input: Universe U , a family of subsets F ⊆ 2U , integer k
Parameter: |U |
Question: Is there a subfamily G ⊆ F , |G| ≤ k ,

such that
⋃
G = U?

Convention: We view it as a bipartite graph with one side
(blue) trying to dominate the other one (red).

W.l.o.g. k ≤ |U |.

Micha l Pilipczuk Kernelization lower bounds, part 2 14/33

Colourful Set Cover

Colourful Set Cover

Input: Universe U and families F1,F2, . . . ,Fk ⊆ 2U

Parameter: |U |+ k
Question: Is there a family G containing exactly one set

from each family Fi , such that
⋃
G = U?

Micha l Pilipczuk Kernelization lower bounds, part 2 15/33

Equivalence of the problems

SC ≤PPT CSC :

Put Fi = F for every i .

CSC ≤PPT SC :

Add k elements e1, e2, . . . , ek ; include ei in every set from Fi .
Then take F =

⋃
Fi .

We will cross-compose Colourful Set Cover into itself.

Assumption: the same universe U , the same k , and t being a
power of 2.

Micha l Pilipczuk Kernelization lower bounds, part 2 16/33

Equivalence of the problems

SC ≤PPT CSC :

Put Fi = F for every i .

CSC ≤PPT SC :

Add k elements e1, e2, . . . , ek ; include ei in every set from Fi .
Then take F =

⋃
Fi .

We will cross-compose Colourful Set Cover into itself.

Assumption: the same universe U , the same k , and t being a
power of 2.

Micha l Pilipczuk Kernelization lower bounds, part 2 16/33

Equivalence of the problems

SC ≤PPT CSC :

Put Fi = F for every i .

CSC ≤PPT SC :

Add k elements e1, e2, . . . , ek ; include ei in every set from Fi .
Then take F =

⋃
Fi .

We will cross-compose Colourful Set Cover into itself.

Assumption: the same universe U , the same k , and t being a
power of 2.

Micha l Pilipczuk Kernelization lower bounds, part 2 16/33

Equivalence of the problems

SC ≤PPT CSC :

Put Fi = F for every i .

CSC ≤PPT SC :

Add k elements e1, e2, . . . , ek ; include ei in every set from Fi .

Then take F =
⋃
Fi .

We will cross-compose Colourful Set Cover into itself.

Assumption: the same universe U , the same k , and t being a
power of 2.

Micha l Pilipczuk Kernelization lower bounds, part 2 16/33

Equivalence of the problems

SC ≤PPT CSC :

Put Fi = F for every i .

CSC ≤PPT SC :

Add k elements e1, e2, . . . , ek ; include ei in every set from Fi .
Then take F =

⋃
Fi .

We will cross-compose Colourful Set Cover into itself.

Assumption: the same universe U , the same k , and t being a
power of 2.

Micha l Pilipczuk Kernelization lower bounds, part 2 16/33

Equivalence of the problems

SC ≤PPT CSC :

Put Fi = F for every i .

CSC ≤PPT SC :

Add k elements e1, e2, . . . , ek ; include ei in every set from Fi .
Then take F =

⋃
Fi .

We will cross-compose Colourful Set Cover into itself.

Assumption: the same universe U , the same k , and t being a
power of 2.

Micha l Pilipczuk Kernelization lower bounds, part 2 16/33

Equivalence of the problems

SC ≤PPT CSC :

Put Fi = F for every i .

CSC ≤PPT SC :

Add k elements e1, e2, . . . , ek ; include ei in every set from Fi .
Then take F =

⋃
Fi .

We will cross-compose Colourful Set Cover into itself.

Assumption: the same universe U , the same k , and t being a
power of 2.

Micha l Pilipczuk Kernelization lower bounds, part 2 16/33

Cross-composing into Colourful Set Cover

Input: Instances (U, (F i
j)1≤j≤k)

Output: Instance (U∗, (F∗
j)1≤j≤k)

U

F1
1

F2
1

1

F1
2

F2
2

2

F1
3

F2
3

3

F1
4

F2
4

4

F1
5

F2
5

5

F1
k

F2
k

k

. . .

t
in

s
t
a
n
c
e
s

︷
︸︸

︷

Problem:
Ensure consistent instance choice

(choices from the same row)

Solution:
Equality gadgets

∀ 1 ≤ j1 < j2 ≤ k

make a gadgetU

log t pairs

(3, 4)

∀i add bin(i) to sets from F i
3

∀i add bin(i) to sets from F i
4

Eq. gadgets are covered
⇔

Instance choices are equal

New parameter:

|U| +O(k2 log t)

Micha l Pilipczuk Kernelization lower bounds, part 2 17/33

Cross-composing into Colourful Set Cover

Input: Instances (U, (F i
j)1≤j≤k)

Output: Instance (U∗, (F∗
j)1≤j≤k)

U

F1
1

F2
1

1

F1
2

F2
2

2

F1
3

F2
3

3

F1
4

F2
4

4

F1
5

F2
5

5

F1
k

F2
k

k

. . .

t
in

s
t
a
n
c
e
s

︷
︸︸

︷

Problem:
Ensure consistent instance choice

(choices from the same row)

Solution:
Equality gadgets

∀ 1 ≤ j1 < j2 ≤ k

make a gadgetU

log t pairs

(3, 4)

∀i add bin(i) to sets from F i
3

∀i add bin(i) to sets from F i
4

Eq. gadgets are covered
⇔

Instance choices are equal

New parameter:

|U| +O(k2 log t)

Micha l Pilipczuk Kernelization lower bounds, part 2 17/33

Cross-composing into Colourful Set Cover

Input: Instances (U, (F i
j)1≤j≤k)

Output: Instance (U∗, (F∗
j)1≤j≤k)

U

F1
1

F2
1

1

F1
2

F2
2

2

F1
3

F2
3

3

F1
4

F2
4

4

F1
5

F2
5

5

F1
k

F2
k

k

. . .

t
in

s
t
a
n
c
e
s

︷
︸︸

︷

Problem:
Ensure consistent instance choice

(choices from the same row)

Solution:
Equality gadgets

∀ 1 ≤ j1 < j2 ≤ k

make a gadgetU

log t pairs

(3, 4)

∀i add bin(i) to sets from F i
3

∀i add bin(i) to sets from F i
4

Eq. gadgets are covered
⇔

Instance choices are equal

New parameter:

|U| +O(k2 log t)

Micha l Pilipczuk Kernelization lower bounds, part 2 17/33

Cross-composing into Colourful Set Cover

Input: Instances (U, (F i
j)1≤j≤k)

Output: Instance (U∗, (F∗
j)1≤j≤k)

U

F1
1

F2
1

1

F1
2

F2
2

2

F1
3

F2
3

3

F1
4

F2
4

4

F1
5

F2
5

5

F1
k

F2
k

k

. . .

t
in

s
t
a
n
c
e
s

︷
︸︸

︷

Problem:
Ensure consistent instance choice

(choices from the same row)

Solution:
Equality gadgets

∀ 1 ≤ j1 < j2 ≤ k

make a gadgetU

log t pairs

(3, 4)

∀i add bin(i) to sets from F i
3

∀i add bin(i) to sets from F i
4

Eq. gadgets are covered
⇔

Instance choices are equal

New parameter:

|U| +O(k2 log t)

Micha l Pilipczuk Kernelization lower bounds, part 2 17/33

Cross-composing into Colourful Set Cover

Input: Instances (U, (F i
j)1≤j≤k)

Output: Instance (U∗, (F∗
j)1≤j≤k)

U

F1
1

F2
1

1

F1
2

F2
2

2

F1
3

F2
3

3

F1
4

F2
4

4

F1
5

F2
5

5

F1
k

F2
k

k

. . .

t
in

s
t
a
n
c
e
s

︷
︸︸

︷

Problem:
Ensure consistent instance choice

(choices from the same row)

Solution:
Equality gadgets

∀ 1 ≤ j1 < j2 ≤ k

make a gadgetU

log t pairs

(3, 4)

∀i add bin(i) to sets from F i
3

∀i add bin(i) to sets from F i
4

Eq. gadgets are covered
⇔

Instance choices are equal

New parameter:

|U| +O(k2 log t)

Micha l Pilipczuk Kernelization lower bounds, part 2 17/33

Cross-composing into Colourful Set Cover

Input: Instances (U, (F i
j)1≤j≤k)

Output: Instance (U∗, (F∗
j)1≤j≤k)

U

F1
1

F2
1

1

F1
2

F2
2

2

F1
3

F2
3

3

F1
4

F2
4

4

F1
5

F2
5

5

F1
k

F2
k

k

. . .

t
in

s
t
a
n
c
e
s

︷
︸︸

︷

Problem:
Ensure consistent instance choice

(choices from the same row)

Solution:
Equality gadgets

∀ 1 ≤ j1 < j2 ≤ k

make a gadgetU

log t pairs

(3, 4)

∀i add bin(i) to sets from F i
3

∀i add bin(i) to sets from F i
4

Eq. gadgets are covered
⇔

Instance choices are equal

New parameter:

|U| +O(k2 log t)

Micha l Pilipczuk Kernelization lower bounds, part 2 17/33

Cross-composing into Colourful Set Cover

Input: Instances (U, (F i
j)1≤j≤k)

Output: Instance (U∗, (F∗
j)1≤j≤k)

U

F1
1

F2
1

1

F1
2

F2
2

2

F1
3

F2
3

3

F1
4

F2
4

4

F1
5

F2
5

5

F1
k

F2
k

k

. . .

t
in

s
t
a
n
c
e
s

︷
︸︸

︷

Problem:
Ensure consistent instance choice

(choices from the same row)

Solution:
Equality gadgets

∀ 1 ≤ j1 < j2 ≤ k

make a gadgetU

log t pairs

(3, 4)

∀i add bin(i) to sets from F i
3

∀i add bin(i) to sets from F i
4

Eq. gadgets are covered
⇔

Instance choices are equal

New parameter:

|U| +O(k2 log t)

Micha l Pilipczuk Kernelization lower bounds, part 2 17/33

Cross-composing into Colourful Set Cover

Input: Instances (U, (F i
j)1≤j≤k)

Output: Instance (U∗, (F∗
j)1≤j≤k)

U

F1
1

F2
1

1

F1
2

F2
2

2

F1
3

F2
3

3

F1
4

F2
4

4

F1
5

F2
5

5

F1
k

F2
k

k

. . .

t
in

s
t
a
n
c
e
s

︷
︸︸

︷

Problem:
Ensure consistent instance choice

(choices from the same row)

Solution:
Equality gadgets

∀ 1 ≤ j1 < j2 ≤ k

make a gadgetU

log t pairs

(3, 4)

∀i add bin(i) to sets from F i
3

∀i add bin(i) to sets from F i
4

Eq. gadgets are covered
⇔

Instance choices are equal

New parameter:

|U| +O(k2 log t)

Micha l Pilipczuk Kernelization lower bounds, part 2 17/33

Cross-composing into Colourful Set Cover

Input: Instances (U, (F i
j)1≤j≤k)

Output: Instance (U∗, (F∗
j)1≤j≤k)

U

F1
1

F2
1

1

F1
2

F2
2

2

F1
3

F2
3

3

F1
4

F2
4

4

F1
5

F2
5

5

F1
k

F2
k

k

. . .

t
in

s
t
a
n
c
e
s

︷
︸︸

︷

Problem:
Ensure consistent instance choice

(choices from the same row)

Solution:
Equality gadgets

∀ 1 ≤ j1 < j2 ≤ k

make a gadgetU

log t pairs

(3, 4)

∀i add bin(i) to sets from F i
3

∀i add bin(i) to sets from F i
4

Eq. gadgets are covered
⇔

Instance choices are equal

New parameter:

|U| +O(k2 log t)

Micha l Pilipczuk Kernelization lower bounds, part 2 17/33

Cross-composing into Colourful Set Cover

Input: Instances (U, (F i
j)1≤j≤k)

Output: Instance (U∗, (F∗
j)1≤j≤k)

U

F1
1

F2
1

1

F1
2

F2
2

2

F1
3

F2
3

3

F1
4

F2
4

4

F1
5

F2
5

5

F1
k

F2
k

k

. . .

t
in

s
t
a
n
c
e
s

︷
︸︸

︷

Problem:
Ensure consistent instance choice

(choices from the same row)

Solution:
Equality gadgets

∀ 1 ≤ j1 < j2 ≤ k

make a gadgetU

log t pairs

(3, 4)

∀i add bin(i) to sets from F i
3

∀i add bin(i) to sets from F i
4

Eq. gadgets are covered
⇔

Instance choices are equal

New parameter:

|U| +O(k2 log t)

Micha l Pilipczuk Kernelization lower bounds, part 2 17/33

Cross-composing into Colourful Set Cover

Input: Instances (U, (F i
j)1≤j≤k)

Output: Instance (U∗, (F∗
j)1≤j≤k)

U

F1
1

F2
1

1

F1
2

F2
2

2

F1
3

F2
3

3

F1
4

F2
4

4

F1
5

F2
5

5

F1
k

F2
k

k

. . .

t
in

s
t
a
n
c
e
s

︷
︸︸

︷

Problem:
Ensure consistent instance choice

(choices from the same row)

Solution:
Equality gadgets

∀ 1 ≤ j1 < j2 ≤ k

make a gadget

U

log t pairs

(3, 4)

∀i add bin(i) to sets from F i
3

∀i add bin(i) to sets from F i
4

Eq. gadgets are covered
⇔

Instance choices are equal

New parameter:

|U| +O(k2 log t)

Micha l Pilipczuk Kernelization lower bounds, part 2 17/33

Cross-composing into Colourful Set Cover

Input: Instances (U, (F i
j)1≤j≤k)

Output: Instance (U∗, (F∗
j)1≤j≤k)

U

F1
1

F2
1

1

F1
2

F2
2

2

F1
3

F2
3

3

F1
4

F2
4

4

F1
5

F2
5

5

F1
k

F2
k

k

. . .

t
in

s
t
a
n
c
e
s

︷
︸︸

︷

Problem:
Ensure consistent instance choice

(choices from the same row)

Solution:
Equality gadgets

∀ 1 ≤ j1 < j2 ≤ k

make a gadget

U

log t pairs

(3, 4)

∀i add bin(i) to sets from F i
3

∀i add bin(i) to sets from F i
4

Eq. gadgets are covered
⇔

Instance choices are equal

New parameter:

|U| +O(k2 log t)

Micha l Pilipczuk Kernelization lower bounds, part 2 17/33

Wrapping up

SC and CSC are equivalent wrt. PPTs.

CSC does not admit a polynomial compression, unless
NP ⊆ coNP/poly.

So neither does SC.

Note: parameterization of Set Cover by |F| also does not
admit a polynomial compression.

The composition is quite different.

Micha l Pilipczuk Kernelization lower bounds, part 2 18/33

Wrapping up

SC and CSC are equivalent wrt. PPTs.

CSC does not admit a polynomial compression, unless
NP ⊆ coNP/poly.

So neither does SC.

Note: parameterization of Set Cover by |F| also does not
admit a polynomial compression.

The composition is quite different.

Micha l Pilipczuk Kernelization lower bounds, part 2 18/33

Wrapping up

SC and CSC are equivalent wrt. PPTs.

CSC does not admit a polynomial compression, unless
NP ⊆ coNP/poly.

So neither does SC.

Note: parameterization of Set Cover by |F| also does not
admit a polynomial compression.

The composition is quite different.

Micha l Pilipczuk Kernelization lower bounds, part 2 18/33

Wrapping up

SC and CSC are equivalent wrt. PPTs.

CSC does not admit a polynomial compression, unless
NP ⊆ coNP/poly.

So neither does SC.

Note: parameterization of Set Cover by |F| also does not
admit a polynomial compression.

The composition is quite different.

Micha l Pilipczuk Kernelization lower bounds, part 2 18/33

Wrapping up

SC and CSC are equivalent wrt. PPTs.

CSC does not admit a polynomial compression, unless
NP ⊆ coNP/poly.

So neither does SC.

Note: parameterization of Set Cover by |F| also does not
admit a polynomial compression.

The composition is quite different.

Micha l Pilipczuk Kernelization lower bounds, part 2 18/33

Structural parameters

Idea: Parameterize the problem by a quantitative measure of
structure of the graph, rather than intended solution size.

Example: treewidth parameterizations

From kernelization point of view: work of Bodlaender, Jansen,
and Kratsch.

Original motivation of cross-composition.

Micha l Pilipczuk Kernelization lower bounds, part 2 19/33

Structural parameters

Idea: Parameterize the problem by a quantitative measure of
structure of the graph, rather than intended solution size.

Example: treewidth parameterizations

From kernelization point of view: work of Bodlaender, Jansen,
and Kratsch.

Original motivation of cross-composition.

Micha l Pilipczuk Kernelization lower bounds, part 2 19/33

Structural parameters

Idea: Parameterize the problem by a quantitative measure of
structure of the graph, rather than intended solution size.

Example: treewidth parameterizations

From kernelization point of view: work of Bodlaender, Jansen,
and Kratsch.

Original motivation of cross-composition.

Micha l Pilipczuk Kernelization lower bounds, part 2 19/33

Structural parameters

Idea: Parameterize the problem by a quantitative measure of
structure of the graph, rather than intended solution size.

Example: treewidth parameterizations

From kernelization point of view: work of Bodlaender, Jansen,
and Kratsch.

Original motivation of cross-composition.

Micha l Pilipczuk Kernelization lower bounds, part 2 19/33

Application 4: Clique par. by vertex cover

Clique/VC

Input: Graph G , a vertex cover X of G , integer k
Parameter: |X |
Question: Is there a clique of size k in G?

W.l.o.g. k ≤ |X |+ 1.

Trivially FPT.

We make a cross-composition from the standard Clique
problem.

Assume the same number of vertices n and the same target size
of the clique k .

Micha l Pilipczuk Kernelization lower bounds, part 2 20/33

Application 4: Clique par. by vertex cover

Clique/VC

Input: Graph G , a vertex cover X of G , integer k
Parameter: |X |
Question: Is there a clique of size k in G?

W.l.o.g. k ≤ |X |+ 1.

Trivially FPT.

We make a cross-composition from the standard Clique
problem.

Assume the same number of vertices n and the same target size
of the clique k .

Micha l Pilipczuk Kernelization lower bounds, part 2 20/33

Application 4: Clique par. by vertex cover

Clique/VC

Input: Graph G , a vertex cover X of G , integer k
Parameter: |X |
Question: Is there a clique of size k in G?

W.l.o.g. k ≤ |X |+ 1.

Trivially FPT.

We make a cross-composition from the standard Clique
problem.

Assume the same number of vertices n and the same target size
of the clique k .

Micha l Pilipczuk Kernelization lower bounds, part 2 20/33

Application 4: Clique par. by vertex cover

Clique/VC

Input: Graph G , a vertex cover X of G , integer k
Parameter: |X |
Question: Is there a clique of size k in G?

W.l.o.g. k ≤ |X |+ 1.

Trivially FPT.

We make a cross-composition from the standard Clique
problem.

Assume the same number of vertices n and the same target size
of the clique k .

Micha l Pilipczuk Kernelization lower bounds, part 2 20/33

Application 4: Clique par. by vertex cover

Clique/VC

Input: Graph G , a vertex cover X of G , integer k
Parameter: |X |
Question: Is there a clique of size k in G?

W.l.o.g. k ≤ |X |+ 1.

Trivially FPT.

We make a cross-composition from the standard Clique
problem.

Assume the same number of vertices n and the same target size
of the clique k .

Micha l Pilipczuk Kernelization lower bounds, part 2 20/33

Cross-composing into Clique/VC

Input: Instances (Gi , k)

Output: Instance (G , X , k∗)

X

I
t vertices

Size constraints force us

to take one vertex from I .

Neighbourhood of i-th vertex

from I acts as instance (Gi , k).

Problem:
Design a ’universal’ modulator X .

.

.

.

1

.

.

.

2

.

.

.

3

.

.

.

4

.

.

.

n

. . .1

. . .2

. . .3

. . .k

All connections are present

except ones in the same row/column.

(
n
2

)
triples

(a, b)

all ¬a ¬b

(a, b) ∈ E(Gi)(a, b) /∈ E(Gi)

Requested size of the clique:

k∗ = k +
(
n
2

)
+ 1

i-th vertex is chosen from I
⇒

∀(a, b) /∈ E(Gi), columns a and b

cannot be chosen simultaneously

New parameter:

|X | = kn + 3
(
n
2

)

Micha l Pilipczuk Kernelization lower bounds, part 2 21/33

Cross-composing into Clique/VC

Input: Instances (Gi , k)

Output: Instance (G , X , k∗)

X

I
t vertices

Size constraints force us

to take one vertex from I .

Neighbourhood of i-th vertex

from I acts as instance (Gi , k).

Problem:
Design a ’universal’ modulator X .

.

.

.

1

.

.

.

2

.

.

.

3

.

.

.

4

.

.

.

n

. . .1

. . .2

. . .3

. . .k

All connections are present

except ones in the same row/column.

(
n
2

)
triples

(a, b)

all ¬a ¬b

(a, b) ∈ E(Gi)(a, b) /∈ E(Gi)

Requested size of the clique:

k∗ = k +
(
n
2

)
+ 1

i-th vertex is chosen from I
⇒

∀(a, b) /∈ E(Gi), columns a and b

cannot be chosen simultaneously

New parameter:

|X | = kn + 3
(
n
2

)

Micha l Pilipczuk Kernelization lower bounds, part 2 21/33

Cross-composing into Clique/VC

Input: Instances (Gi , k)

Output: Instance (G , X , k∗)

X

I
t vertices

Size constraints force us

to take one vertex from I .

Neighbourhood of i-th vertex

from I acts as instance (Gi , k).

Problem:
Design a ’universal’ modulator X .

.

.

.

1

.

.

.

2

.

.

.

3

.

.

.

4

.

.

.

n

. . .1

. . .2

. . .3

. . .k

All connections are present

except ones in the same row/column.

(
n
2

)
triples

(a, b)

all ¬a ¬b

(a, b) ∈ E(Gi)(a, b) /∈ E(Gi)

Requested size of the clique:

k∗ = k +
(
n
2

)
+ 1

i-th vertex is chosen from I
⇒

∀(a, b) /∈ E(Gi), columns a and b

cannot be chosen simultaneously

New parameter:

|X | = kn + 3
(
n
2

)

Micha l Pilipczuk Kernelization lower bounds, part 2 21/33

Cross-composing into Clique/VC

Input: Instances (Gi , k)

Output: Instance (G , X , k∗)

X

I
t vertices

Size constraints force us

to take one vertex from I .

Neighbourhood of i-th vertex

from I acts as instance (Gi , k).

Problem:
Design a ’universal’ modulator X .

.

.

.

1

.

.

.

2

.

.

.

3

.

.

.

4

.

.

.

n

. . .1

. . .2

. . .3

. . .k

All connections are present

except ones in the same row/column.

(
n
2

)
triples

(a, b)

all ¬a ¬b

(a, b) ∈ E(Gi)(a, b) /∈ E(Gi)

Requested size of the clique:

k∗ = k +
(
n
2

)
+ 1

i-th vertex is chosen from I
⇒

∀(a, b) /∈ E(Gi), columns a and b

cannot be chosen simultaneously

New parameter:

|X | = kn + 3
(
n
2

)

Micha l Pilipczuk Kernelization lower bounds, part 2 21/33

Cross-composing into Clique/VC

Input: Instances (Gi , k)

Output: Instance (G , X , k∗)

X

I
t vertices

Size constraints force us

to take one vertex from I .

Neighbourhood of i-th vertex

from I acts as instance (Gi , k).

Problem:
Design a ’universal’ modulator X .

.

.

.

1

.

.

.

2

.

.

.

3

.

.

.

4

.

.

.

n

. . .1

. . .2

. . .3

. . .k

All connections are present

except ones in the same row/column.

(
n
2

)
triples

(a, b)

all ¬a ¬b

(a, b) ∈ E(Gi)(a, b) /∈ E(Gi)

Requested size of the clique:

k∗ = k +
(
n
2

)
+ 1

i-th vertex is chosen from I
⇒

∀(a, b) /∈ E(Gi), columns a and b

cannot be chosen simultaneously

New parameter:

|X | = kn + 3
(
n
2

)

Micha l Pilipczuk Kernelization lower bounds, part 2 21/33

Cross-composing into Clique/VC

Input: Instances (Gi , k)

Output: Instance (G , X , k∗)

X

I
t vertices

Size constraints force us

to take one vertex from I .

Neighbourhood of i-th vertex

from I acts as instance (Gi , k).

Problem:
Design a ’universal’ modulator X .

.

.

.

1

.

.

.

2

.

.

.

3

.

.

.

4

.

.

.

n

. . .1

. . .2

. . .3

. . .k

All connections are present

except ones in the same row/column.

(
n
2

)
triples

(a, b)

all ¬a ¬b

(a, b) ∈ E(Gi)(a, b) /∈ E(Gi)

Requested size of the clique:

k∗ = k +
(
n
2

)
+ 1

i-th vertex is chosen from I
⇒

∀(a, b) /∈ E(Gi), columns a and b

cannot be chosen simultaneously

New parameter:

|X | = kn + 3
(
n
2

)

Micha l Pilipczuk Kernelization lower bounds, part 2 21/33

Cross-composing into Clique/VC

Input: Instances (Gi , k)

Output: Instance (G , X , k∗)

X

I
t vertices

Size constraints force us

to take one vertex from I .

Neighbourhood of i-th vertex

from I acts as instance (Gi , k).

Problem:
Design a ’universal’ modulator X .

.

.

.

1

.

.

.

2

.

.

.

3

.

.

.

4

.

.

.

n

. . .1

. . .2

. . .3

. . .k

All connections are present

except ones in the same row/column.

(
n
2

)
triples

(a, b)

all

¬a ¬b

(a, b) ∈ E(Gi)(a, b) /∈ E(Gi)

Requested size of the clique:

k∗ = k +
(
n
2

)
+ 1

i-th vertex is chosen from I
⇒

∀(a, b) /∈ E(Gi), columns a and b

cannot be chosen simultaneously

New parameter:

|X | = kn + 3
(
n
2

)

Micha l Pilipczuk Kernelization lower bounds, part 2 21/33

Cross-composing into Clique/VC

Input: Instances (Gi , k)

Output: Instance (G , X , k∗)

X

I
t vertices

Size constraints force us

to take one vertex from I .

Neighbourhood of i-th vertex

from I acts as instance (Gi , k).

Problem:
Design a ’universal’ modulator X .

.

.

.

1

.

.

.

2

.

.

.

3

.

.

.

4

.

.

.

n

. . .1

. . .2

. . .3

. . .k

All connections are present

except ones in the same row/column.

(
n
2

)
triples

(a, b)

all ¬a

¬b

(a, b) ∈ E(Gi)(a, b) /∈ E(Gi)

Requested size of the clique:

k∗ = k +
(
n
2

)
+ 1

i-th vertex is chosen from I
⇒

∀(a, b) /∈ E(Gi), columns a and b

cannot be chosen simultaneously

New parameter:

|X | = kn + 3
(
n
2

)

Micha l Pilipczuk Kernelization lower bounds, part 2 21/33

Cross-composing into Clique/VC

Input: Instances (Gi , k)

Output: Instance (G , X , k∗)

X

I
t vertices

Size constraints force us

to take one vertex from I .

Neighbourhood of i-th vertex

from I acts as instance (Gi , k).

Problem:
Design a ’universal’ modulator X .

.

.

.

1

.

.

.

2

.

.

.

3

.

.

.

4

.

.

.

n

. . .1

. . .2

. . .3

. . .k

All connections are present

except ones in the same row/column.

(
n
2

)
triples

(a, b)

all ¬a ¬b

(a, b) ∈ E(Gi)(a, b) /∈ E(Gi)

Requested size of the clique:

k∗ = k +
(
n
2

)
+ 1

i-th vertex is chosen from I
⇒

∀(a, b) /∈ E(Gi), columns a and b

cannot be chosen simultaneously

New parameter:

|X | = kn + 3
(
n
2

)

Micha l Pilipczuk Kernelization lower bounds, part 2 21/33

Cross-composing into Clique/VC

Input: Instances (Gi , k)

Output: Instance (G , X , k∗)

X

I
t vertices

Size constraints force us

to take one vertex from I .

Neighbourhood of i-th vertex

from I acts as instance (Gi , k).

Problem:
Design a ’universal’ modulator X .

.

.

.

1

.

.

.

2

.

.

.

3

.

.

.

4

.

.

.

n

. . .1

. . .2

. . .3

. . .k

All connections are present

except ones in the same row/column.

(
n
2

)
triples

(a, b)

all ¬a ¬b

(a, b) ∈ E(Gi)(a, b) /∈ E(Gi)

Requested size of the clique:

k∗ = k +
(
n
2

)
+ 1

i-th vertex is chosen from I
⇒

∀(a, b) /∈ E(Gi), columns a and b

cannot be chosen simultaneously

New parameter:

|X | = kn + 3
(
n
2

)

Micha l Pilipczuk Kernelization lower bounds, part 2 21/33

Cross-composing into Clique/VC

Input: Instances (Gi , k)

Output: Instance (G , X , k∗)

X

I
t vertices

Size constraints force us

to take one vertex from I .

Neighbourhood of i-th vertex

from I acts as instance (Gi , k).

Problem:
Design a ’universal’ modulator X .

.

.

.

1

.

.

.

2

.

.

.

3

.

.

.

4

.

.

.

n

. . .1

. . .2

. . .3

. . .k

All connections are present

except ones in the same row/column.

(
n
2

)
triples

(a, b)

all ¬a ¬b

(a, b) ∈ E(Gi)(a, b) /∈ E(Gi)

Requested size of the clique:

k∗ = k +
(
n
2

)
+ 1

i-th vertex is chosen from I
⇒

∀(a, b) /∈ E(Gi), columns a and b

cannot be chosen simultaneously

New parameter:

|X | = kn + 3
(
n
2

)

Micha l Pilipczuk Kernelization lower bounds, part 2 21/33

Cross-composing into Clique/VC

Input: Instances (Gi , k)

Output: Instance (G , X , k∗)

X

I
t vertices

Size constraints force us

to take one vertex from I .

Neighbourhood of i-th vertex

from I acts as instance (Gi , k).

Problem:
Design a ’universal’ modulator X .

.

.

.

1

.

.

.

2

.

.

.

3

.

.

.

4

.

.

.

n

. . .1

. . .2

. . .3

. . .k

All connections are present

except ones in the same row/column.

(
n
2

)
triples

(a, b)

all ¬a ¬b

(a, b) ∈ E(Gi)(a, b) /∈ E(Gi)

Requested size of the clique:

k∗ = k +
(
n
2

)
+ 1

i-th vertex is chosen from I
⇒

∀(a, b) /∈ E(Gi), columns a and b

cannot be chosen simultaneously

New parameter:

|X | = kn + 3
(
n
2

)

Micha l Pilipczuk Kernelization lower bounds, part 2 21/33

Cross-composing into Clique/VC

Input: Instances (Gi , k)

Output: Instance (G , X , k∗)

X

I
t vertices

Size constraints force us

to take one vertex from I .

Neighbourhood of i-th vertex

from I acts as instance (Gi , k).

Problem:
Design a ’universal’ modulator X .

.

.

.

1

.

.

.

2

.

.

.

3

.

.

.

4

.

.

.

n

. . .1

. . .2

. . .3

. . .k

All connections are present

except ones in the same row/column.

(
n
2

)
triples

(a, b)

all ¬a ¬b
(a, b) ∈ E(Gi)

(a, b) /∈ E(Gi)

Requested size of the clique:

k∗ = k +
(
n
2

)
+ 1

i-th vertex is chosen from I
⇒

∀(a, b) /∈ E(Gi), columns a and b

cannot be chosen simultaneously

New parameter:

|X | = kn + 3
(
n
2

)

Micha l Pilipczuk Kernelization lower bounds, part 2 21/33

Cross-composing into Clique/VC

Input: Instances (Gi , k)

Output: Instance (G , X , k∗)

X

I
t vertices

Size constraints force us

to take one vertex from I .

Neighbourhood of i-th vertex

from I acts as instance (Gi , k).

Problem:
Design a ’universal’ modulator X .

.

.

.

1

.

.

.

2

.

.

.

3

.

.

.

4

.

.

.

n

. . .1

. . .2

. . .3

. . .k

All connections are present

except ones in the same row/column.

(
n
2

)
triples

(a, b)

all ¬a ¬b

(a, b) ∈ E(Gi)

(a, b) /∈ E(Gi)

Requested size of the clique:

k∗ = k +
(
n
2

)
+ 1

i-th vertex is chosen from I
⇒

∀(a, b) /∈ E(Gi), columns a and b

cannot be chosen simultaneously

New parameter:

|X | = kn + 3
(
n
2

)

Micha l Pilipczuk Kernelization lower bounds, part 2 21/33

Cross-composing into Clique/VC

Input: Instances (Gi , k)

Output: Instance (G , X , k∗)

X

I
t vertices

Size constraints force us

to take one vertex from I .

Neighbourhood of i-th vertex

from I acts as instance (Gi , k).

Problem:
Design a ’universal’ modulator X .

.

.

.

1

.

.

.

2

.

.

.

3

.

.

.

4

.

.

.

n

. . .1

. . .2

. . .3

. . .k

All connections are present

except ones in the same row/column.

(
n
2

)
triples

(a, b)

all ¬a ¬b

(a, b) ∈ E(Gi)(a, b) /∈ E(Gi)

Requested size of the clique:

k∗ = k +
(
n
2

)
+ 1

i-th vertex is chosen from I
⇒

∀(a, b) /∈ E(Gi), columns a and b

cannot be chosen simultaneously

New parameter:

|X | = kn + 3
(
n
2

)

Micha l Pilipczuk Kernelization lower bounds, part 2 21/33

Cross-composing into Clique/VC

Input: Instances (Gi , k)

Output: Instance (G , X , k∗)

X

I
t vertices

Size constraints force us

to take one vertex from I .

Neighbourhood of i-th vertex

from I acts as instance (Gi , k).

Problem:
Design a ’universal’ modulator X .

.

.

.

1

.

.

.

2

.

.

.

3

.

.

.

4

.

.

.

n

. . .1

. . .2

. . .3

. . .k

All connections are present

except ones in the same row/column.

(
n
2

)
triples

(a, b)

all ¬a ¬b

(a, b) ∈ E(Gi)(a, b) /∈ E(Gi)

Requested size of the clique:

k∗ = k +
(
n
2

)
+ 1

i-th vertex is chosen from I
⇒

∀(a, b) /∈ E(Gi), columns a and b

cannot be chosen simultaneously

New parameter:

|X | = kn + 3
(
n
2

)

Micha l Pilipczuk Kernelization lower bounds, part 2 21/33

Cross-composing into Clique/VC

Input: Instances (Gi , k)

Output: Instance (G , X , k∗)

X

I
t vertices

Size constraints force us

to take one vertex from I .

Neighbourhood of i-th vertex

from I acts as instance (Gi , k).

Problem:
Design a ’universal’ modulator X .

.

.

.

1

.

.

.

2

.

.

.

3

.

.

.

4

.

.

.

n

. . .1

. . .2

. . .3

. . .k

All connections are present

except ones in the same row/column.

(
n
2

)
triples

(a, b)

all ¬a ¬b

(a, b) ∈ E(Gi)(a, b) /∈ E(Gi)

Requested size of the clique:

k∗ = k +
(
n
2

)
+ 1

i-th vertex is chosen from I
⇒

∀(a, b) /∈ E(Gi), columns a and b

cannot be chosen simultaneously

New parameter:

|X | = kn + 3
(
n
2

)

Micha l Pilipczuk Kernelization lower bounds, part 2 21/33

Conclusion of the case study

Making compositions is highly non-trivial.

Requires good understanding of the problem.

Intuitively, what we exploit is choice. We need to identify it,
and build a technical construction on top of it.

Often it requires a lot of gadgeteering...

... experience ...

... tricks that I did not mention ...

or clever ideas.

Micha l Pilipczuk Kernelization lower bounds, part 2 22/33

Conclusion of the case study

Making compositions is highly non-trivial.

Requires good understanding of the problem.

Intuitively, what we exploit is choice. We need to identify it,
and build a technical construction on top of it.

Often it requires a lot of gadgeteering...

... experience ...

... tricks that I did not mention ...

or clever ideas.

Micha l Pilipczuk Kernelization lower bounds, part 2 22/33

Conclusion of the case study

Making compositions is highly non-trivial.

Requires good understanding of the problem.

Intuitively, what we exploit is choice. We need to identify it,
and build a technical construction on top of it.

Often it requires a lot of gadgeteering...

... experience ...

... tricks that I did not mention ...

or clever ideas.

Micha l Pilipczuk Kernelization lower bounds, part 2 22/33

Conclusion of the case study

Making compositions is highly non-trivial.

Requires good understanding of the problem.

Intuitively, what we exploit is choice. We need to identify it,
and build a technical construction on top of it.

Often it requires a lot of gadgeteering...

... experience ...

... tricks that I did not mention ...

or clever ideas.

Micha l Pilipczuk Kernelization lower bounds, part 2 22/33

Conclusion of the case study

Making compositions is highly non-trivial.

Requires good understanding of the problem.

Intuitively, what we exploit is choice. We need to identify it,
and build a technical construction on top of it.

Often it requires a lot of gadgeteering...

... experience ...

... tricks that I did not mention ...

or clever ideas.

Micha l Pilipczuk Kernelization lower bounds, part 2 22/33

Conclusion of the case study

Making compositions is highly non-trivial.

Requires good understanding of the problem.

Intuitively, what we exploit is choice. We need to identify it,
and build a technical construction on top of it.

Often it requires a lot of gadgeteering...

... experience ...

... tricks that I did not mention ...

or clever ideas.

Micha l Pilipczuk Kernelization lower bounds, part 2 22/33

Conclusion of the case study

Making compositions is highly non-trivial.

Requires good understanding of the problem.

Intuitively, what we exploit is choice. We need to identify it,
and build a technical construction on top of it.

Often it requires a lot of gadgeteering...

... experience ...

... tricks that I did not mention ...

or clever ideas.

Micha l Pilipczuk Kernelization lower bounds, part 2 22/33

Weak compositions

We have seen an O(k2) kernel for Feedback Vertex Set
(bitsize O(k2 log k)).

Can we prove that a subquadratic kernel is unlikely?

YES

Weak compositions: proving lower bounds on kernelization
complexity for problems that do have polynomial kernels.

First results by Dell and van Melkebeek (STOC 2010), the
framework here by (Dell, Marx; Hermelin, Wu; SODA 2012).

Micha l Pilipczuk Kernelization lower bounds, part 2 23/33

Weak compositions

We have seen an O(k2) kernel for Feedback Vertex Set
(bitsize O(k2 log k)).

Can we prove that a subquadratic kernel is unlikely?

YES

Weak compositions: proving lower bounds on kernelization
complexity for problems that do have polynomial kernels.

First results by Dell and van Melkebeek (STOC 2010), the
framework here by (Dell, Marx; Hermelin, Wu; SODA 2012).

Micha l Pilipczuk Kernelization lower bounds, part 2 23/33

Weak compositions

We have seen an O(k2) kernel for Feedback Vertex Set
(bitsize O(k2 log k)).

Can we prove that a subquadratic kernel is unlikely?

YES

Weak compositions: proving lower bounds on kernelization
complexity for problems that do have polynomial kernels.

First results by Dell and van Melkebeek (STOC 2010), the
framework here by (Dell, Marx; Hermelin, Wu; SODA 2012).

Micha l Pilipczuk Kernelization lower bounds, part 2 23/33

Weak compositions

We have seen an O(k2) kernel for Feedback Vertex Set
(bitsize O(k2 log k)).

Can we prove that a subquadratic kernel is unlikely?

YES

Weak compositions: proving lower bounds on kernelization
complexity for problems that do have polynomial kernels.

First results by Dell and van Melkebeek (STOC 2010), the
framework here by (Dell, Marx; Hermelin, Wu; SODA 2012).

Micha l Pilipczuk Kernelization lower bounds, part 2 23/33

Weak compositions

We have seen an O(k2) kernel for Feedback Vertex Set
(bitsize O(k2 log k)).

Can we prove that a subquadratic kernel is unlikely?

YES

Weak compositions: proving lower bounds on kernelization
complexity for problems that do have polynomial kernels.

First results by Dell and van Melkebeek (STOC 2010), the
framework here by (Dell, Marx; Hermelin, Wu; SODA 2012).

Micha l Pilipczuk Kernelization lower bounds, part 2 23/33

Back to Fortnow and Santhanam

OR-distillation of t = k1000 instances of size k into one instance
with bitsize k7 is unlikely.

Well, it should be unlikely even if we required any bitsize
sublinear in t.

If one examines the proof, then one can exclude OR-distillation
into bitsize O(t1−ε · kc), for any constants ε > 0 and c .

Let’s look again at the proof of the cross-composition Theorem.

Micha l Pilipczuk Kernelization lower bounds, part 2 24/33

Back to Fortnow and Santhanam

OR-distillation of t = k1000 instances of size k into one instance
with bitsize k7 is unlikely.

Well, it should be unlikely even if we required any bitsize
sublinear in t.

If one examines the proof, then one can exclude OR-distillation
into bitsize O(t1−ε · kc), for any constants ε > 0 and c .

Let’s look again at the proof of the cross-composition Theorem.

Micha l Pilipczuk Kernelization lower bounds, part 2 24/33

Back to Fortnow and Santhanam

OR-distillation of t = k1000 instances of size k into one instance
with bitsize k7 is unlikely.

Well, it should be unlikely even if we required any bitsize
sublinear in t.

If one examines the proof, then one can exclude OR-distillation
into bitsize O(t1−ε · kc), for any constants ε > 0 and c .

Let’s look again at the proof of the cross-composition Theorem.

Micha l Pilipczuk Kernelization lower bounds, part 2 24/33

Back to Fortnow and Santhanam

OR-distillation of t = k1000 instances of size k into one instance
with bitsize k7 is unlikely.

Well, it should be unlikely even if we required any bitsize
sublinear in t.

If one examines the proof, then one can exclude OR-distillation
into bitsize O(t1−ε · kc), for any constants ε > 0 and c .

Let’s look again at the proof of the cross-composition Theorem.

Micha l Pilipczuk Kernelization lower bounds, part 2 24/33

Cross-composition proof, recap
Q Q

k = max |xi |, log t = O(k)

L

co
m

p
o

poly(k)

co
m

p
o

poly(k)

co
m

p
o

poly(k)

R

cm
p

r

cm
p

r

cm
p

r

O
R
-R

O
R
-R

cm
p

r K → O(Kd−ε)

co
m

p
o

t → O(t1/d)

Micha l Pilipczuk Kernelization lower bounds, part 2 25/33

Cross-composition proof, recap
Q Q

k = max |xi |, log t = O(k)

L

co
m

p
o

poly(k)

co
m

p
o

poly(k)

co
m

p
o

poly(k)

R

cm
p

r

cm
p

r

cm
p

r

O
R
-R

O
R
-R

cm
p

r K → O(Kd−ε)

co
m

p
o

t → O(t1/d)

Micha l Pilipczuk Kernelization lower bounds, part 2 25/33

Cross-composition proof, recap
Q Q

k = max |xi |, log t = O(k)

L

co
m

p
o

poly(k)

co
m

p
o

poly(k)

co
m

p
o

poly(k)

R

cm
p

r

cm
p

r

cm
p

r

O
R
-R

O
R
-R

cm
p

r K → O(Kd−ε)

co
m

p
o

t → O(t1/d)

Micha l Pilipczuk Kernelization lower bounds, part 2 25/33

Weak compositions, formally

It seems that a composition with output bitsize dependence on t
being O(t1/d) should exclude compression into bitsize O(kd−ε).

Weak cross-composition

An unparameterized problem Q weakly cross-composes into a
parameterized problem L, if there exists a polynomial equivalence
relation R, a real constant d ≥ 1, and an algorithm that, given
R-equivalent strings x1, x2, . . . , xt , in time poly

(
t +

∑t
i=1 |xi |

)
produces one instance (y , k?) such that

(y , k?) ∈ L iff xi ∈ Q for at least one i = 1, 2, . . . , t,

k? = t1/d+o(1) · poly (maxti=1 |xi |).

Micha l Pilipczuk Kernelization lower bounds, part 2 26/33

Weak compositions, formally

It seems that a composition with output bitsize dependence on t
being O(t1/d) should exclude compression into bitsize O(kd−ε).

Weak cross-composition

An unparameterized problem Q weakly cross-composes into a
parameterized problem L, if there exists a polynomial equivalence
relation R, a real constant d ≥ 1, and an algorithm that, given
R-equivalent strings x1, x2, . . . , xt , in time poly

(
t +

∑t
i=1 |xi |

)
produces one instance (y , k?) such that

(y , k?) ∈ L iff xi ∈ Q for at least one i = 1, 2, . . . , t,

k? = t1/d+o(1) · poly (maxti=1 |xi |).

Micha l Pilipczuk Kernelization lower bounds, part 2 26/33

Weak cross-composition theorem

Constant d will be called the dimension of the weak
cross-composition.

Weak cross-composition theorem

Suppose some NP-hard problem Q admits a weak cross-composition
into L with dimension d . Suppose further that L admits a polynomial
compression with bitsize O(kd−ε), for some ε > 0. Then
NP ⊆ coNP/poly.

Note: Also called cross-composition of bounded cost by
Bodlaender et al. (SIDMA, 2014).

Micha l Pilipczuk Kernelization lower bounds, part 2 27/33

Weak cross-composition theorem

Constant d will be called the dimension of the weak
cross-composition.

Weak cross-composition theorem

Suppose some NP-hard problem Q admits a weak cross-composition
into L with dimension d . Suppose further that L admits a polynomial
compression with bitsize O(kd−ε), for some ε > 0. Then
NP ⊆ coNP/poly.

Note: Also called cross-composition of bounded cost by
Bodlaender et al. (SIDMA, 2014).

Micha l Pilipczuk Kernelization lower bounds, part 2 27/33

Weak cross-composition theorem

Constant d will be called the dimension of the weak
cross-composition.

Weak cross-composition theorem

Suppose some NP-hard problem Q admits a weak cross-composition
into L with dimension d . Suppose further that L admits a polynomial
compression with bitsize O(kd−ε), for some ε > 0. Then
NP ⊆ coNP/poly.

Note: Also called cross-composition of bounded cost by
Bodlaender et al. (SIDMA, 2014).

Micha l Pilipczuk Kernelization lower bounds, part 2 27/33

Lower bound for Vertex Cover

Using weak cross-composition we now prove that Vertex
Cover does not admit a kernel with bitsize O(k2−ε), for any
ε > 0. (unless...)

But it had a linear kernel!?

Vertex Cover has a kernel with 2k vertices, which therefore
requires O(k2) bits to be encoded.

Crux: choose an appropriate problem Q to start with.

Micha l Pilipczuk Kernelization lower bounds, part 2 28/33

Lower bound for Vertex Cover

Using weak cross-composition we now prove that Vertex
Cover does not admit a kernel with bitsize O(k2−ε), for any
ε > 0. (unless...)

But it had a linear kernel!?

Vertex Cover has a kernel with 2k vertices, which therefore
requires O(k2) bits to be encoded.

Crux: choose an appropriate problem Q to start with.

Micha l Pilipczuk Kernelization lower bounds, part 2 28/33

Lower bound for Vertex Cover

Using weak cross-composition we now prove that Vertex
Cover does not admit a kernel with bitsize O(k2−ε), for any
ε > 0. (unless...)

But it had a linear kernel!?

Vertex Cover has a kernel with 2k vertices, which therefore
requires O(k2) bits to be encoded.

Crux: choose an appropriate problem Q to start with.

Micha l Pilipczuk Kernelization lower bounds, part 2 28/33

Lower bound for Vertex Cover

Using weak cross-composition we now prove that Vertex
Cover does not admit a kernel with bitsize O(k2−ε), for any
ε > 0. (unless...)

But it had a linear kernel!?

Vertex Cover has a kernel with 2k vertices, which therefore
requires O(k2) bits to be encoded.

Crux: choose an appropriate problem Q to start with.

Micha l Pilipczuk Kernelization lower bounds, part 2 28/33

Multicolored Biclique

Multicolored Biclique

Input: Bipartite graph H with bipartition A] B ,
where A = A1] . . .] Ak , B = B1] . . .] Bk .

Question: Is there a biclique of size Kk,k in H that
contains one vertex from each Ai and each Bi?

Multicolored Biclique is NP-hard even if each Ai and Bi

has the same size.

We provide a weak cross composition of dimension 2 from this
version into Vertex Cover.

Assumptions: all the input instances have the same k , each
color class has size n in every input instance, t = s2.

Micha l Pilipczuk Kernelization lower bounds, part 2 29/33

Multicolored Biclique

Multicolored Biclique

Input: Bipartite graph H with bipartition A] B ,
where A = A1] . . .] Ak , B = B1] . . .] Bk .

Question: Is there a biclique of size Kk,k in H that
contains one vertex from each Ai and each Bi?

Multicolored Biclique is NP-hard even if each Ai and Bi

has the same size.

We provide a weak cross composition of dimension 2 from this
version into Vertex Cover.

Assumptions: all the input instances have the same k , each
color class has size n in every input instance, t = s2.

Micha l Pilipczuk Kernelization lower bounds, part 2 29/33

Multicolored Biclique

Multicolored Biclique

Input: Bipartite graph H with bipartition A] B ,
where A = A1] . . .] Ak , B = B1] . . .] Bk .

Question: Is there a biclique of size Kk,k in H that
contains one vertex from each Ai and each Bi?

Multicolored Biclique is NP-hard even if each Ai and Bi

has the same size.

We provide a weak cross composition of dimension 2 from this
version into Vertex Cover.

Assumptions: all the input instances have the same k , each
color class has size n in every input instance, t = s2.

Micha l Pilipczuk Kernelization lower bounds, part 2 29/33

Multicolored Biclique

Multicolored Biclique

Input: Bipartite graph H with bipartition A] B ,
where A = A1] . . .] Ak , B = B1] . . .] Bk .

Question: Is there a biclique of size Kk,k in H that
contains one vertex from each Ai and each Bi?

Multicolored Biclique is NP-hard even if each Ai and Bi

has the same size.

We provide a weak cross composition of dimension 2 from this
version into Vertex Cover.

Assumptions: all the input instances have the same k , each
color class has size n in every input instance, t = s2.

Micha l Pilipczuk Kernelization lower bounds, part 2 29/33

Composition

Â1
1 Â1

2

Â1

Â2
1 Â2

2

Â2

Â3
1 Â3

2

Â3

B̂1
1 B̂1

2B̂1 B̂2
1 B̂2

2B̂2 B̂3
1 B̂3

2B̂3

Create s copies of the left side and s copies of the right side.

N = s · 2kn

Â1
1 Â1

2

Â1

Â2
1 Â2

2

Â2

Â3
1 Â3

2

Â3

B̂1
1 B̂1

2B̂1 B̂2
1 B̂2

2B̂2 B̂3
1 B̂3

2B̂3

complement of one of the instances

Embed s2 instances into s2 pairs of the sides.

Â1
1 Â1

2

Â1

Â2
1 Â2

2

Â2

Â3
1 Â3

2

Â3

B̂1
1 B̂1

2B̂1 B̂2
1 B̂2

2B̂2 B̂3
1 B̂3

2B̂3

complement of one of the instances

Ask for an independent set of size 2k ;

equivalently, a vertex cover of size N − 2k.

Â1
1 Â1

2

Â1

Â2
1 Â2

2

Â2

Â3
1 Â3

2

Â3

B̂1
1 B̂1

2B̂1 B̂2
1 B̂2

2B̂2 B̂3
1 B̂3

2B̂3

complement of one of the instances

Edges on the sides ensure choosing one instance and respecting colors.

Edges originating in this instance ensure that the instance is solved.

Micha l Pilipczuk Kernelization lower bounds, part 2 30/33

Composition

Â1
1 Â1

2

Â1

Â2
1 Â2

2

Â2

Â3
1 Â3

2

Â3

B̂1
1 B̂1

2B̂1 B̂2
1 B̂2

2B̂2 B̂3
1 B̂3

2B̂3

Create s copies of the left side and s copies of the right side.

N = s · 2kn

Â1
1 Â1

2

Â1

Â2
1 Â2

2

Â2

Â3
1 Â3

2

Â3

B̂1
1 B̂1

2B̂1 B̂2
1 B̂2

2B̂2 B̂3
1 B̂3

2B̂3

complement of one of the instances

Embed s2 instances into s2 pairs of the sides.

Â1
1 Â1

2

Â1

Â2
1 Â2

2

Â2

Â3
1 Â3

2

Â3

B̂1
1 B̂1

2B̂1 B̂2
1 B̂2

2B̂2 B̂3
1 B̂3

2B̂3

complement of one of the instances

Ask for an independent set of size 2k ;

equivalently, a vertex cover of size N − 2k.

Â1
1 Â1

2

Â1

Â2
1 Â2

2

Â2

Â3
1 Â3

2

Â3

B̂1
1 B̂1

2B̂1 B̂2
1 B̂2

2B̂2 B̂3
1 B̂3

2B̂3

complement of one of the instances

Edges on the sides ensure choosing one instance and respecting colors.

Edges originating in this instance ensure that the instance is solved.

Micha l Pilipczuk Kernelization lower bounds, part 2 30/33

Composition

Â1
1 Â1

2

Â1

Â2
1 Â2

2

Â2

Â3
1 Â3

2

Â3

B̂1
1 B̂1

2B̂1 B̂2
1 B̂2

2B̂2 B̂3
1 B̂3

2B̂3

Create s copies of the left side and s copies of the right side.

N = s · 2kn

Â1
1 Â1

2

Â1

Â2
1 Â2

2

Â2

Â3
1 Â3

2

Â3

B̂1
1 B̂1

2B̂1 B̂2
1 B̂2

2B̂2 B̂3
1 B̂3

2B̂3

complement of one of the instances

Embed s2 instances into s2 pairs of the sides.

Â1
1 Â1

2

Â1

Â2
1 Â2

2

Â2

Â3
1 Â3

2

Â3

B̂1
1 B̂1

2B̂1 B̂2
1 B̂2

2B̂2 B̂3
1 B̂3

2B̂3

complement of one of the instances

Ask for an independent set of size 2k ;

equivalently, a vertex cover of size N − 2k.

Â1
1 Â1

2

Â1

Â2
1 Â2

2

Â2

Â3
1 Â3

2

Â3

B̂1
1 B̂1

2B̂1 B̂2
1 B̂2

2B̂2 B̂3
1 B̂3

2B̂3

complement of one of the instances

Edges on the sides ensure choosing one instance and respecting colors.

Edges originating in this instance ensure that the instance is solved.

Micha l Pilipczuk Kernelization lower bounds, part 2 30/33

Composition

Â1
1 Â1

2

Â1

Â2
1 Â2

2

Â2

Â3
1 Â3

2

Â3

B̂1
1 B̂1

2B̂1 B̂2
1 B̂2

2B̂2 B̂3
1 B̂3

2B̂3

Create s copies of the left side and s copies of the right side.

N = s · 2kn

Â1
1 Â1

2

Â1

Â2
1 Â2

2

Â2

Â3
1 Â3

2

Â3

B̂1
1 B̂1

2B̂1 B̂2
1 B̂2

2B̂2 B̂3
1 B̂3

2B̂3

complement of one of the instances

Embed s2 instances into s2 pairs of the sides.

Â1
1 Â1

2

Â1

Â2
1 Â2

2

Â2

Â3
1 Â3

2

Â3

B̂1
1 B̂1

2B̂1 B̂2
1 B̂2

2B̂2 B̂3
1 B̂3

2B̂3

complement of one of the instances

Ask for an independent set of size 2k ;

equivalently, a vertex cover of size N − 2k.

Â1
1 Â1

2

Â1

Â2
1 Â2

2

Â2

Â3
1 Â3

2

Â3

B̂1
1 B̂1

2B̂1 B̂2
1 B̂2

2B̂2 B̂3
1 B̂3

2B̂3

complement of one of the instances

Edges on the sides ensure choosing one instance and respecting colors.

Edges originating in this instance ensure that the instance is solved.

Micha l Pilipczuk Kernelization lower bounds, part 2 30/33

Wrapping up

Parameter in the output instance is N − 2k = t1/2 · 2kn − 2k ,
which means that the weak composition has dimension 2.

Hence, there is no kernel with O(k2−ε) bits for VC.

Reduction from VC to FVS: add a degree-2 vertex to every
edge, thus creating a triangle.

Hence also FVS does not admit a O(k2−ε) kernel.

For more O(kd−ε) lower bounds, see the book.

Micha l Pilipczuk Kernelization lower bounds, part 2 31/33

Wrapping up

Parameter in the output instance is N − 2k = t1/2 · 2kn − 2k ,
which means that the weak composition has dimension 2.

Hence, there is no kernel with O(k2−ε) bits for VC.

Reduction from VC to FVS: add a degree-2 vertex to every
edge, thus creating a triangle.

Hence also FVS does not admit a O(k2−ε) kernel.

For more O(kd−ε) lower bounds, see the book.

Micha l Pilipczuk Kernelization lower bounds, part 2 31/33

Wrapping up

Parameter in the output instance is N − 2k = t1/2 · 2kn − 2k ,
which means that the weak composition has dimension 2.

Hence, there is no kernel with O(k2−ε) bits for VC.

Reduction from VC to FVS: add a degree-2 vertex to every
edge, thus creating a triangle.

Hence also FVS does not admit a O(k2−ε) kernel.

For more O(kd−ε) lower bounds, see the book.

Micha l Pilipczuk Kernelization lower bounds, part 2 31/33

Wrapping up

Parameter in the output instance is N − 2k = t1/2 · 2kn − 2k ,
which means that the weak composition has dimension 2.

Hence, there is no kernel with O(k2−ε) bits for VC.

Reduction from VC to FVS: add a degree-2 vertex to every
edge, thus creating a triangle.

Hence also FVS does not admit a O(k2−ε) kernel.

For more O(kd−ε) lower bounds, see the book.

Micha l Pilipczuk Kernelization lower bounds, part 2 31/33

Wrapping up

Parameter in the output instance is N − 2k = t1/2 · 2kn − 2k ,
which means that the weak composition has dimension 2.

Hence, there is no kernel with O(k2−ε) bits for VC.

Reduction from VC to FVS: add a degree-2 vertex to every
edge, thus creating a triangle.

Hence also FVS does not admit a O(k2−ε) kernel.

For more O(kd−ε) lower bounds, see the book.

Micha l Pilipczuk Kernelization lower bounds, part 2 31/33

Further perspectives

Compression vs. Kernelization

VC has kernel with O(k) vertices and O(k2) edges.
What about FVS?
Is compositionality the only reason why polynomial kernelization
is infeasible?
Can we find a sensible problem where kernelization and
compression are provable different?

Completeness theory for kernelization.

Hermelin, Kratsch, So ltys, Wahlström, Wu; IPEC 2013.

Turing kernelization

Turing kernel is a polynomial-time algorithm with an access to
an oracle that resolves kernels.
How to show infeasibility of Turing kernelization?

Micha l Pilipczuk Kernelization lower bounds, part 2 32/33

Further perspectives

Compression vs. Kernelization

VC has kernel with O(k) vertices and O(k2) edges.
What about FVS?

Is compositionality the only reason why polynomial kernelization
is infeasible?
Can we find a sensible problem where kernelization and
compression are provable different?

Completeness theory for kernelization.

Hermelin, Kratsch, So ltys, Wahlström, Wu; IPEC 2013.

Turing kernelization

Turing kernel is a polynomial-time algorithm with an access to
an oracle that resolves kernels.
How to show infeasibility of Turing kernelization?

Micha l Pilipczuk Kernelization lower bounds, part 2 32/33

Further perspectives

Compression vs. Kernelization

VC has kernel with O(k) vertices and O(k2) edges.
What about FVS?
Is compositionality the only reason why polynomial kernelization
is infeasible?

Can we find a sensible problem where kernelization and
compression are provable different?

Completeness theory for kernelization.

Hermelin, Kratsch, So ltys, Wahlström, Wu; IPEC 2013.

Turing kernelization

Turing kernel is a polynomial-time algorithm with an access to
an oracle that resolves kernels.
How to show infeasibility of Turing kernelization?

Micha l Pilipczuk Kernelization lower bounds, part 2 32/33

Further perspectives

Compression vs. Kernelization

VC has kernel with O(k) vertices and O(k2) edges.
What about FVS?
Is compositionality the only reason why polynomial kernelization
is infeasible?
Can we find a sensible problem where kernelization and
compression are provable different?

Completeness theory for kernelization.

Hermelin, Kratsch, So ltys, Wahlström, Wu; IPEC 2013.

Turing kernelization

Turing kernel is a polynomial-time algorithm with an access to
an oracle that resolves kernels.
How to show infeasibility of Turing kernelization?

Micha l Pilipczuk Kernelization lower bounds, part 2 32/33

Further perspectives

Compression vs. Kernelization

VC has kernel with O(k) vertices and O(k2) edges.
What about FVS?
Is compositionality the only reason why polynomial kernelization
is infeasible?
Can we find a sensible problem where kernelization and
compression are provable different?

Completeness theory for kernelization.

Hermelin, Kratsch, So ltys, Wahlström, Wu; IPEC 2013.

Turing kernelization

Turing kernel is a polynomial-time algorithm with an access to
an oracle that resolves kernels.
How to show infeasibility of Turing kernelization?

Micha l Pilipczuk Kernelization lower bounds, part 2 32/33

Further perspectives

Compression vs. Kernelization

VC has kernel with O(k) vertices and O(k2) edges.
What about FVS?
Is compositionality the only reason why polynomial kernelization
is infeasible?
Can we find a sensible problem where kernelization and
compression are provable different?

Completeness theory for kernelization.

Hermelin, Kratsch, So ltys, Wahlström, Wu; IPEC 2013.

Turing kernelization

Turing kernel is a polynomial-time algorithm with an access to
an oracle that resolves kernels.
How to show infeasibility of Turing kernelization?

Micha l Pilipczuk Kernelization lower bounds, part 2 32/33

Further perspectives

Compression vs. Kernelization

VC has kernel with O(k) vertices and O(k2) edges.
What about FVS?
Is compositionality the only reason why polynomial kernelization
is infeasible?
Can we find a sensible problem where kernelization and
compression are provable different?

Completeness theory for kernelization.

Hermelin, Kratsch, So ltys, Wahlström, Wu; IPEC 2013.

Turing kernelization

Turing kernel is a polynomial-time algorithm with an access to
an oracle that resolves kernels.
How to show infeasibility of Turing kernelization?

Micha l Pilipczuk Kernelization lower bounds, part 2 32/33

Further perspectives

Compression vs. Kernelization

VC has kernel with O(k) vertices and O(k2) edges.
What about FVS?
Is compositionality the only reason why polynomial kernelization
is infeasible?
Can we find a sensible problem where kernelization and
compression are provable different?

Completeness theory for kernelization.

Hermelin, Kratsch, So ltys, Wahlström, Wu; IPEC 2013.

Turing kernelization

Turing kernel is a polynomial-time algorithm with an access to
an oracle that resolves kernels.

How to show infeasibility of Turing kernelization?

Micha l Pilipczuk Kernelization lower bounds, part 2 32/33

Further perspectives

Compression vs. Kernelization

VC has kernel with O(k) vertices and O(k2) edges.
What about FVS?
Is compositionality the only reason why polynomial kernelization
is infeasible?
Can we find a sensible problem where kernelization and
compression are provable different?

Completeness theory for kernelization.

Hermelin, Kratsch, So ltys, Wahlström, Wu; IPEC 2013.

Turing kernelization

Turing kernel is a polynomial-time algorithm with an access to
an oracle that resolves kernels.
How to show infeasibility of Turing kernelization?

Micha l Pilipczuk Kernelization lower bounds, part 2 32/33

Exercises

Exercise 15.4, all the remaining points.
Exercises 15.1 and 15.5.

Tikz faces based on a code by Raoul Kessels, http://www.texample.net/tikz/examples/emoticons/,

under Creative Commons Attribution 2.5 license (CC BY 2.5)

Micha l Pilipczuk Kernelization lower bounds, part 2 33/33

