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Graph Minors

I Some consequences of the Graph Minors Theorem give a

quick way of showing that certain problems are FPT.

I However, the function f(k) in the resulting FPT algorithms

can be HUGE, completely impractical.

I History: motivation for FPT.

I Parts and ingredients of the theory are useful for algorithm

design.

I New algorithmic results are still being developed.



Graph Minors

Definition: Graph H is a minor G (H ≤ G) if H can be obtained

from G by deleting edges, deleting vertices, and contracting edges.
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Definition: Graph H is a minor G (H ! G ) if H can be obtained from G by
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Example: A triangle is a minor of a graph G if and only if G has a cycle (i.e., it is

not a forest).
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Example: A triangle is a minor of a graph G if and only if G has a

cycle (i.e., it is not a forest).



Graph minors

Equivalent definition: Graph H is a minor of G if there is a

mapping φ that maps each vertex of H to a connected subset of G

such that

I φ(u) and φ(v) are disjoint if u 6= v, and

I if uv ∈ E(G), then there is an edge between φ(u) and φ(v).

Graph minors

Equivalent definition: Graph H is a minor of G if there is a mapping φ that maps

each vertex of H to a connected subset of G such that

φ(u) and φ(v) are disjoint if u != v , and

if uv ∈ E (G), then there is an edge between φ(u) and φ(v).
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Minor closed properties

Definition: A set G of graphs is minor closed if whenever G ∈ G
and H ≤ G, then H ∈ G as well.

Examples of minor closed properties:

planar graphs

acyclic graphs (forests)

graphs having no cycle longer than k

empty graphs

Examples of not minor closed properties:

complete graphs

regular graphs

bipartite graphs



Forbidden minors

Let G be a minor closed set and let F be the set of “minimal bad

graphs”: H ∈ F if H 6∈ G, but every proper minor of H is in G.

Characterization by forbidden minors:

G ∈ G ⇐⇒ ∀H ∈ F , H 6≤ G

The set F is the obstruction set of property G.

Theorem: [Wagner] A graph is planar if and only if it does not

have a K5 or K3,3 minor.

In other words: the obstruction set of planarity is F = {K5,K3,3}.
Does every minor closed property have such a finite

characterization?
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Graph Minors Theorem

Theorem: [Robertson and Seymour] Every minor closed property

G has a finite obstruction set.

Note: The proof is contained in the paper series “Graph Minors

I–XX”.

Note: The size of the obstruction set can be astronomical even for

simple properties.

Theorem: [Robertson and Seymour] For every fixed graph H,

there is an O(n3) time algorithm for testing whether H is a minor

of the given graph G.

Corollary: For every minor closed property G, there is an

O(n3) time

algorithm for testing whether a given graph G is in G.
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Applications
Planar Face Cover: Given a graph G and an integer k, find

an embedding of planar graph G such that there are k faces that

cover all the vertices.

Applications

PLANAR FACE COVER: Given a graph G and an integer k , find an embedding of

planar graph G such that there are k faces that cover all the vertices.

One line argument:

For every fixed k , the class Gk of graphs of yes-instances is minor closed.

⇓
For every fixed k , there is a O(n3) time algorithm for PLANAR FACE COVER.

Note: non-uniform FPT.
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One line argument:

For every fixed k, the class Gk of graphs of yes-instances is minor

closed.

⇓

For every fixed k, there is a O(n3) time algorithm for Planar

Face Cover.

Note: non-uniform FPT.



Applications
k-Leaf Spanning Tree: Given a graph G and an integer k, find

a spanning tree with at least k leaves.

Applications

k -LEAF SPANNING TREE: Given a graph G and an integer k , find a spanning tree

with at least k leaves.

Technical modification: Is there such a spanning tree for at least one component of

G?

One line argument:

For every fixed k , the class Gk of no-instances is minor closed.

⇓
For every fixed k , k -LEAF SPANNING TREE can be solved in time O(n3).
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Technical modification: Is there such a spanning tree for at least

one component of G?

One line argument:

For every fixed k, the class Gk of no-instances is minor closed.

⇓

For every fixed k, k-Leaf Spanning Tree can be solved in time

O(n3).



G + k vertices
Let G be a graph property, and let G + kv contain graph G if there

is a set S ⊆ V (G) of k vertices such that G \ S ∈ G.

G + k vertices

Let G be a graph property, and let G + kv contain graph G if there is a set

S ⊆ V (G) of k vertices such that G \ S ∈ G.

S

Lemma: If G is minor closed, then G + kv is minor closed for every fixed k .

⇒ It is (nonuniform) FPT to decide if G can be transformed into a member of G by

deleting k vertices.
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Lemma: If G is minor closed, then G + kv is minor closed for

every fixed k.
⇒ It is (nonuniform) FPT to decide if G can be transformed into a
member of G by deleting k vertices.

I If G = forests ⇒ G + kv = graphs that can be made acyclic by the

deletion of k vertices ⇒ Feedback Vertex Set is FPT.

I If G = planar graphs ⇒ G + kv = graphs that can be made planar

by the deletion of k vertices (k-apex graphs) ⇒ k-Apex Graph is

FPT.

I If G = empty graphs ⇒ G + kv = graphs with vertex cover number

at most k ⇒ Vertex Cover is FPT.
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Lemma: If G is minor closed, then G + kv is minor closed for

every fixed k.
⇒ It is (nonuniform) FPT to decide if G can be transformed into a
member of G by deleting k vertices.

I If G = forests ⇒ G + kv = graphs that can be made acyclic by the
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I If G = planar graphs ⇒ G + kv = graphs that can be made planar
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Recap: Tree decomposition

A tree decomposition of a graph G is a pair T = (T, χ), where T

is a tree and mapping χ assigns to every node t of T a vertex

subset Xt (called a bag) such that

(T1)
⋃

t∈V (T )Xt = V (G).

(T2) For every vw ∈ E(G), there exists a node t of T

such that bag χ(t) = Xt contains both v and w.

(T3) For every v ∈ V (G), the set χ−1(v), i.e. the set of

nodes Tv = {t ∈ V (T ) | v ∈ Xt} forms a connected

subgraph (subtree) of T .

The width of tree decomposition T = (T, χ) equals

maxt∈V (T ) |Xt| − 1, i.e the maximum size of its bag minus one.

The treewidth of a graph G is the minimum width of a tree

decomposition of G.
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Applications of treewidth

In parameterized algorithms various modifications of WIN/WIN

approach: either treewidth is small, and we solve the problem, or

something good happens

I Finding a path of length ≥ k is FPT because every graph with

treewidth k contains a k-path

I Feedback vertex set is FPT because if the treewidth is more

than k, the answer is NO.

I Disjoint Path problem is FPT because if the treewidth is

≥ f(k), then the graph contains irrelevant vertex (non-trivial

arguments)



Applications of treewidth

In parameterized algorithms various modifications of WIN/WIN

approach: either treewidth is small, and we solve the problem, or

something good happens

I Finding a path of length ≥ k is FPT because every graph with

treewidth k contains a k-path

I Feedback vertex set is FPT because if the treewidth is more

than k, the answer is NO.

I Disjoint Path problem is FPT because if the treewidth is

≥ f(k), then the graph contains irrelevant vertex (non-trivial

arguments)



Applications of treewidth

In parameterized algorithms various modifications of WIN/WIN

approach: either treewidth is small, and we solve the problem, or

something good happens

I Finding a path of length ≥ k is FPT because every graph with

treewidth k contains a k-path

I Feedback vertex set is FPT because if the treewidth is more

than k, the answer is NO.

I Disjoint Path problem is FPT because if the treewidth is

≥ f(k), then the graph contains irrelevant vertex (non-trivial

arguments)



Properties of treewidth

Fact: treewidth ≤ 2 if and only if graph

is subgraph of a series-parallel graph

Fact: For every k ≥ 2, the treewidth of

the k × k grid is exactly k.

Fact: Treewidth does not increase if we delete edges, delete

vertices, or contract edges.

=⇒ If F is a minor of G, then the treewidth of F is at most the

treewidth of G.

The treewidth of the k-clique is k − 1.
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Obstruction to Treewidth

Another, extremely useful, obstructions to small treewidth are

grid-minors. Let t be a positive integer. The t× t-grid �t is a

graph with vertex set {(x, y) | x, y ∈ {1, 2, . . . , t}}. Thus �t has

exactly t2 vertices. Two different vertices (x, y) and (x′, y′) are

adjacent if and only if |x− x′|+ |y − y′| ≤ 1.



If a graph contains large grid as a minor, its treewidth is also large.



If a graph contains large grid as a minor, its treewidth is also large.

What is much more surprising, is that the converse is also true:

every graph of large treewidth contains a large grid as a minor.



Theorem (Excluded Grid Theorem, Robertson, Seymour and

Thomas, 1994)

If the treewidth of G is at least k4t2(t+2), then G has �t as a

minor.



Theorem (Excluded Grid Theorem, Robertson, Seymour and

Thomas, 1994)

If the treewidth of G is at least k4t2(t+2), then G has �t as a

minor.

It was open for many years whether a polynomial relationship could

be established between the treewidth of a graph G and the size of

its largest grid minor.



Theorem (Excluded Grid Theorem, Robertson, Seymour and

Thomas, 1994)

If the treewidth of G is at least k4t2(t+2), then G has �t as a

minor.

It was open for many years whether a polynomial relationship could

be established between the treewidth of a graph G and the size of

its largest grid minor.

Theorem (Excluded Grid Theorem, Chekuri and Chuzhoy,

2013)

Let t ≥ 0 be an integer. There exists a universal constant c, such

that every graph of treewidth at least c · t99 contains �t as a minor.



Excluded Grid Theorem A : Planar Graph

Our set of treewidth applications is based on the following

Theorem (Planar Excluded Grid Theorem, Robertson,

Seymour and Thomas; Guo and Tamaki)

Let t ≥ 0 be an integer. Every planar graph G of treewidth at least
9
2 t, contains �t as a minor. Furthermore, there exists a

polynomial-time algorithm that for a given planar graph G either

outputs a tree decomposition of G of width 9
2 t or constructs a

minor model of �t in G.



Grid Theorem: Sketch of the proof

The proof is based on Menger’s Theorem

Theorem (Menger 1927)

Let G be a finite undirected graph and x and y two nonadjacent

vertices. The size of the minimum vertex cut for x and y (the

minimum number of vertices whose removal disconnects x and y)

is equal to the maximum number of pairwise vertex-disjoint paths

from x to y.



Grid Theorem: Sketch of the proof

Let G be a plane graph that has no (`× `)-grid as a minor.

WEST

NORTH

SOUTH

EAST



Grid Theorem: Sketch of the proof

Either East can be separated from West, or South from North by

removing at most ` vertices

WEST

NORTH

SOUTH

EAST



Grid Theorem: Sketch of the proof

Otherwise by making use of Menger we can construct `× ` grid as

a minor

WEST

NORTH

SOUTH

EAST



Grid Theorem: Sketch of the proof

Partition the edges. Every time the middle set contains only

vertices of East, West, South, and North, at most 4` in total.

WEST

NORTH

SOUTH

EAST



Grid Theorem: Sketch of the proof

“At this point we have reached a degree of handwaving so

exuberant, one may fear we are about to fly away. Surprisingly, this

handwaving has a completely formal theorem behind it.”

(Ryan Williams 2011, SIGACT News)



Excluded Grid Theorem: Planar Graphs

One more Excluded Grid Theorem, this time not for minors but

just for edge contractions.

Figure : A triangulated grid Γ4.



Excluded Grid Theorem: Planar Graphs

One more Excluded Grid Theorem, this time not for minors but

just for edge contractions.

Figure : A triangulated grid Γ4.

For an integer t > 0 the graph Γt is obtained from the grid �t by

adding for every 1 ≤ x, y ≤ t− 1, the edge (x, y), (x+ 1, y + 1),

and making the vertex (t, t) adjacent to all vertices with x ∈ {1, t}
and y ∈ {1, t}.



Excluded Grid Theorem: Planar Graphs

Figure : A triangulated grid Γ4.

Theorem
For any connected planar graph G and integer t ≥ 0, if

tw(G) ≥ 9(t+ 1), then G contains Γt as a contraction.

Furthermore there exists a polynomial-time algorithm that given G

either outputs a tree decomposition of G of width 9(t+ 1) or a set

of edges whose contraction result in Γt.



Excluded Grid Theorem: Planar Graph

One more Excluded Grid Theorem, this time not for minors but

just for edge contractions.

Theorem
For any connected planar graph G and integer t ≥ 0, if

tw(G) ≥ 9(t+ 1), then G contains Γt as a contraction.

Furthermore there exists a polynomial-time algorithm that given G

either outputs a tree decomposition of G of width 9(t+ 1) or a set

of edges whose contraction result in Γt.



Proof sketch

Figure 3: The steps of the proof of Lemma 5. The two first steps are the boundary contraction

of a partial triangulation of a (9 × 9)-grid. The third step is the contraction to Γ4.

The proof of the following lemma is based on Lemmata 4 and 5 and Proposition 5.

Lemma 6. Let G be a graph embedded in a surface of Euler genus γ and let k be a positive

integer. If the treewidth of G is more than 12 · (γ + 1)3/2 · (2k + 4), then G contains Γk as a

v-smooth contraction with v being one of the corners of Γk.

Proof. Applying Lemma 4 for r = (γ +1)1/2 · (2k +4), we deduce that G contains an (r × r)-

grid H as a surface minor. This implies that after a sequence of vertex/edge removals or

contractions G, can be transformed to H. If we apply only the contractions in this sequence,

we end up with some graph G′ in Σ which contains H as a subgraph. The embedding of G′ in

Σ induces an embedding of H in this surface. By Proposition 5, some ((2k + 3) × (2k + 3))-

subgrid H ′ of H is embedded in a close disk D of Σ in a way that the boundary cycle of

H ′ is the boundary of D. For each internal face F of H ′ in D we do the following: contract

each component of the graph induced by vertices of G laying inside F into a single vertex,

choose an edge which joins this vertex with a vertex of H and contract it. Let G′′ be the

obtained graph. Notice that G′ ∩ D is contracted to some partial triangulation H ′′ of the

grid H ′. Then we perform the boundary contraction of the graph G′′ to H ′′. Thus we have

contracted G′′ to a ((2k + 1) × (2k + 1))-grid Γ and the described contraction is a v-smooth

contraction, where v is a corner of Γ. It remains to apply Lemma 5 to conclude the proof of

the lemma.

Lemma 7. There is a constant c such that if G is a graph h-nearly embedded in a surface of

Euler genus γ without apices, where tw(G) ≥ c ·γ3/2 ·h3/2 ·k, then G contains as a v-smooth

contraction the graph Γk with the loaded corner v.

Proof. We choose c such that c·γ3/2 ·h3/2·k ≥ (12·(γ+1)3/2 ·(2·$h1/2%·(k+2)+4)+1)·(h+1)−1.

Let Σ be a surface of Euler genus γ with cycles C1, . . . , Ch, such that each cycle Ci is the

border of an open disc ∆i in Σ and such that G is h-nearly embedded in Σ. Let also

G = G0 ∪ G1 ∪ · · · ∪ Gh, where G0 is embedded in Σ and G1, . . . , Gh are vortices. We
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Shifting Techniques



Locally bounded treewidth

For vertex v of a graph G and integer r ≥ 1, we denote by Gr
v the

subgraph of G induced by vertices within distance r from v in G.
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For vertex v of a graph G and integer r ≥ 1, we denote by Gr
v the

subgraph of G induced by vertices within distance r from v in G.

Lemma
Let G be a planar graph, v ∈ V (G) and r ≥ 1. Then

tw(Gr
v) ≤ 18(r + 1).

Proof.
Hint: use contraction-grid theorem.



Locally bounded treewidth

For vertex v of a graph G and integer r ≥ 1, we denote by Gr
v the

subgraph of G induced by vertices within distance r from v in G.

Lemma
Let G be a planar graph, v ∈ V (G) and r ≥ 1. Then

tw(Gr
v) ≤ 18(r + 1).

Proof.
Hint: use contraction-grid theorem.

18(r + 1) in the above lemma can be made 3r + 1.



Locally bounded treewidth

Lemma
Let v be a vertex of a planar graph G and let Li, be the vertices of

G at distance i, 0 ≤ i ≤ n, from v. Then for any i, j ≥ 0, the

treewidth of the subgraph Gi,i+j induced by vertices in

Li ∪ Li+1 ∪ · · · ∪ Li+j does not exceed 3j + 1.

Proof.
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Locally bounded treewidth

Lemma
Let v be a vertex of a planar graph G and let Li, be the vertices of

G at distance i, 0 ≤ i ≤ n, from v. Then for any i, j ≥ 0, the
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Intuition

The idea behind the shifting technique is as follows:

I Pick a vertex v of planar graph G and run breadth-first search

(BFS) from v.

I For any i, j ≥ 0, the treewidth of the subgraph Gi,i+j induced by

vertices in levels i, i+ 1, . . . , i+ j of BFS does not exceed 3j + 1.

I Now for an appropriate choice of parameters, we can find a“shift”

of “windows”, i.e. a disjoint set of a small number of consecutive

levels of BFS, “covering” the solution. Because every window is of

small treewidth, we can employ the dynamic programing or the

power of Courcelle’s theorem to solve the problem.

We will see two examples.



Intuition

The idea behind the shifting technique is as follows:

I Pick a vertex v of planar graph G and run breadth-first search

(BFS) from v.

I For any i, j ≥ 0, the treewidth of the subgraph Gi,i+j induced by

vertices in levels i, i+ 1, . . . , i+ j of BFS does not exceed 3j + 1.

I Now for an appropriate choice of parameters, we can find a“shift”

of “windows”, i.e. a disjoint set of a small number of consecutive

levels of BFS, “covering” the solution. Because every window is of

small treewidth, we can employ the dynamic programing or the

power of Courcelle’s theorem to solve the problem.

We will see two examples.



Useful viewpoint

Lemma
Let G be a planar graph and k be an integer, 1 ≥ k ≤ |V (G)|.
Then the vertex set of G can be partitioned into k sets such that

any k − 1 of the sets induce a graph of treewidth at most 3k − 2.

Moreover, such a partition can be found in polynomial time.
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Example 1: Subgraph Isomorphism

Subgraph Isomorphism: given graphs H and G, find a copy of

H in G as subgraph. Parameter k := |V (H)|.

MSO2 formula of size kO(1) for Subgraph Isomorphism exists.

Courcelle’s Theorem implies that we have f(k, t) · n time algorithm

for Subgraph Isomorphism on graphs of treewidth t.
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Example 1: Subgraph Isomorphism

I Partition the vertex set of G into k+ 1 sets S0 ∪ · · · ∪ Sk such

that for every i ∈ {0, . . . , k}, graph G− Si is of treewidth at

most 3k + 1.

I For every k-vertex subset X of G, there is i ∈ {0, . . . , k} such

that X ∩ Si = ∅. Therefore, if G contains H as a subgraph,

then for at least one value of i, G− Si also contains H.

I It means that by trying each of the graphs G− Si for each

i ∈ {0, . . . , k}, we find a copy of H in G if there is one.
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i ∈ {0, . . . , k}, we find a copy of H in G if there is one.
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Example 1: Subgraph Isomorphism

Theorem
Subgraph Isomorphism on planar graphs is FPT parameterized

by |V (H)|.



Example 2: Bisection

For a given n-vertex graph G, weight function w : V (G)→ N and

integer k, the task is to decide if there is a partition of V (G) into

sets V1 and V2 of weights dw(V (G))/2e and bw(V (G)/2c and

such that the number of edges between V1 and V2 is at most k. In

other words, we are looking for a balanced partition (V1, V2) with a

(V1, V2)-cut of size at most k.



Example 2: Bisection. Building blocks.

Lemma
Bisection is solvable in time 2t · nO(1) on an n-vertex given

together with its tree decomposition of width t.

Lemma
Let G be a planar graph and k be an integer, 1 ≥ k ≤ |E(G)|.
Then the edge set of G can be partitioned into k sets such that

after contracting edges of any of these sets, the treewidth of the

resulting graph does not exceed ck for some constant c > 0.

Moreover, such a partition can be found in polynomial time.

Proof.
Grid theorem, what else? On board.



Example 2: Bisection

Theorem
Bisection on planar graphs is solvable in time 2O(k) · nO(1).

Proof.



Shifting technique: history

I Originated as a tool for obtaining PTAS. The basic idea due

to Baker (1994)

I Eppstein: the notion of local treewidth (1995)

I Grohe: extending to H-minor-free graphs (2003)

I Demaine, Hajiaghayi, and Kawarabayashi contractions on

H-minor-free graphs (2005).



Bidimensionality

Subexponential algorithms, EPTAS, kernels on planar, bounded

genus, H-minor free graphs...
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Reminder: Grid Theorem

Theorem (Planar Excluded Grid Theorem)

Let t ≥ 0 be an integer. Every planar graph G of treewidth at least
9
2 t, contains �t as a minor. Furthermore, there exists a

polynomial-time algorithm that for a given planar graph G either

outputs a tree decomposition of G of width 9
2 t or constructs a

minor model of �t in G.



Lipton-Tarjan Theorem

Corollary

The treewidth of an n-vertex planar graph is O(
√
n)



Vertex Cover on planar graphs. Just three questions

Does a planar graph contains a vertex cover of size at most k?

I Vertex Cover has a kernel with at most 2k vertices which

is an induced subgraph of the input graph. Thus when the

input graph is planar we obtain in polynomial time an

equivalent planar instance of size at most 2k.

I Find a tree decomposition

I Dynamic programming solves Vertex Cover in time

2O(
√
t)nO(1) = 2O(

√
k)nO(1)
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Other problems on Planar Graphs

What about other problems like Independent Set, Feedback

Vertex Set, Dominating Set or k-path?

I For most of the problems, obtaining a kernel is not that easy,

and

I For some like k-Path, we know that no polynomial kernel

exists (of course unless ....)
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Vertex Cover, one more try

(i) How large can be the vertex cover of �t?

�t contains a

matching of size t2/2, and thus vertex cover of �t is at least

t2/2.

(ii) Given a tree decomposition of width t of G, how fast can we

solve Vertex Cover? In time 2t · tO(1) · n.

(iii) Is Vertex Cover minor-closed?YES!

(i) + (ii) + (iii) give 2O(
√
k)nO(1)-time algorithm for Vertex Cover

on planar graphs.
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Vertex Cover, one more try

(i) + (ii) + (iii) gives 2O(
√
k)nO(1)-time algorithm for Vertex Cover

on planar graphs.

(i) Compute the treewidth of G. If it is more than c
√
k—say

NO. (It contains �2
√
k as a minor...)

(ii) If the treewidth is less than c
√
k, do DP.



Vertex Cover, one more try

(i) + (ii) + (iii) gives 2O(
√
k)nO(1)-time algorithm for Vertex Cover

on planar graphs.

(i) Compute the treewidth of G. If it is more than c
√
k—say

NO. (It contains �2
√
k as a minor...)

(ii) If the treewidth is less than c
√
k, do DP.



What is special in Vertex Cover?

Same strategy should work for any problem if

(P1) The size of any solution in �t is of order Ω(t2).

(P2) On graphs of treewidth t, the problem is solvable in time

2O(t) · nO(1).

(P3) The problem is minor-closed, i.e. if G has a solution of

size k, then every minor of G also has a solution of size k.

This settles Feedback Vertex Set and k-path. Why not

Dominating Set?



Reminder: Contracting to a grid

Figure : A triangulated grid Γ4.

Theorem
For any connected planar graph G and integer t ≥ 0, if

tw(G) ≥ 9(t+ 1), then G contains Γt as a contraction.

Furthermore there exists a polynomial-time algorithm that given G

either outputs a tree decomposition of G of width 9(t+ 1) or a set

of edges whose contraction result in Γt.



Strategy for Dominating Set

Same strategy should work for any problem with:

(P1) The size of any solution in Γt is of order Ω(t2).

(P2) On graphs of treewidth t, the problem is solvable in time

2O(t) · nO(1).

(P3) The problem is contraction-closed, i.e. if G has a solution

of size k, then every minor of G also has a solution of size

k.

This settles Dominating Set



Lets try to formalize

Restrict to vertex-subset problems.

Let φ be a computable function which takes as an input graph G,

a set S ⊆ V (G) and outputs true or false.

For an example, for Dominating Set: φ(G,S) = true if and only if

N [S] = V (G).



Lets try to formalize

Definition
For function φ, we define vertex-subset problem Π as a

parameterized problem, where input is a graph G and an integer k,

the parameter is k.

For maximization problem, the task is to decide whether there is a

set S ⊆ V (G) such that |S| ≥ k and φ(G,S) = true.

Similarly, for minimization problem, we are looking for a set

S ⊆ V (G) such that |S| ≤ k and φ(G,S) = true.



Optimization problem

Definition
For a vertex-subset minimization problem Π,

OPTΠ(G) = min{k | (G, k) ∈ Π}.

If there is no k such that (G, k) ∈ Π, we put OPTΠ(G) = +∞.

For a vertex-subset maximization problem Π,

OPTΠ(G) = max{k | (G, k) ∈ Π}.

If no k such that (G, k) ∈ Π exists, then OPTΠ(G) = −∞.



Bidimensionality

Definition (Bidimensional problem)

A vertex subset problem Π is bidimensional if it is

contraction-closed, and there exists a constant c > 0 such that

OPTΠ(Γk) ≥ ck2.

Vertex Cover, Independent Set, Feedback Vertex Set, Induced

Matching, Cycle Packing, Scattered Set for fixed value of d,

k-Path, k-cycle, Dominating Set, Connected Dominating Set,

Cycle Packing, r-Center...
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Bidimensionality

Definition ( Bidimensional problem)

A vertex subset problem Π is bidimensional if it is

contraction-closed, and there exists a constant c > 0 such that

OPTΠ(Γk) ≥ ck2.

Lemma (Parameter-Treewidth Bound)

Let Π be a bidimensional problem. Then there exists a constant

αΠ such that for any connected planar graph G,

tw(G) ≤ αΠ ·
√
OPTΠ(G). Furthermore, there exists a polynomial

time algorithm that for a given G constructs a tree decomposition

of G of width at most αΠ ·
√
OPTΠ(G).



Bidimensionality: Summing up

Theorem
Let Π be a bidimensional problem such that there exists an

algorithm for Π with running time 2O(t)nO(1) when a tree

decomposition of the input graph G of width t is given. Then Π is

solvable in time 2O(
√
k)nO(1) on connected planar graphs.



Bidimensionality: Remarks

I Polynomial dependence on n can be turned into linear, so all

bidimensionality based algorithms run in time 2O(
√
k)n.

I Is it possible to obtain 2o(
√
k)nO(1) running time for problems

on planar graphs? (NO, unless ETH fails)

I Planarity is used only to exclude a grid. Thus all the

arguments extend to classes of graphs with a similar property.

I Bidimensionality+Separability+MSO2 brings to Linear

kernelization on apex-minor-free graphs. For minor-closed

problems to minor-free graphs.
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