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Field

Field is a triple (F ,+, ·), where

F is a set, + and · are binary operations

associativity: (a + b) + c = a + (b + c), (a · b) · c = a · (b · c)

commutativity: a + b = b + a, a · b = b · a
distributivity: a · (b + c) = a · b + a · c .

additive identity: ∃ 0 ∈ F s.t. 0 + a = a.

multiplicative identity: ∃ 1 ∈ F s.t. ∀a ∈ F \ {0} : 1 · a = a.

additive inverses: ∀ a ∈ F ∃b ∈ F s.t. a + b = 0;

multiplicative inverses: ∀ a ∈ F \ {0} ∃ b ∈ F s.t. a · b = 1;

Some familiar (infinite) fields: Q, R, C.
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Finite fields of characteristic 2

In what follows, we use finite fields of size |F | = 2`.
We need to know just three things about such fields:

They exist (for every ` ∈ N),

We can perform arithmetic operations fast, in O(log |F |(log log |F |)2)
time,

They are of characteristic two, i.e. 1 + 1 = 0.
In particular, for any element a, we have

a + a = a · (1 + 1) = a · 0 = 0
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Multivariate polynomials

Fix a field F .

Monomial

Monomial is an expression of the form m = axc1
1 xc2

2 · · · xcnn , where

a ∈ F

x1, . . . , xn are variables

c1, . . . , cn ∈ N ∪ {0}.
Degree of m is

∑n
i=1 ci .

Examples:

5x3
2x

7
3 (degree 10),

x1x2x3 · · · x2014 (degree 2014),
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Multivariate polynomials

Polynomial

A polynomial is a finite sum of monomials.

Polynomial (more precisely)

A polynomial an expression of the form

p =
∑

(c1,...,cn)∈(N∪{0})n
ac1,...,cnx

c1
1 xc2

2 · · · x
cn
n , (1)

where the coefficients ac1,...,cn are non-zero only for a finite number of
tuples (c1, . . . , cn).

Degree of p is the maximum degree of its monomials.
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Multivariate polynomials

Examples:

x1 + x2 (degree 1),

x3
1x2 + 5x3

2x
7
3 − x1x

5
2x3 (degree 10),

x1x2x3 · · · x2014 (degree 2014),

0 (the zero polynomial).
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The Schwartz-Zippel Lemma

Lemma [DeMillo and Lipton 1978, Zippel 1979, Schwartz 1980]

Let p(x1, x2, . . . , xn) be a non-zero polynomial of degree at most d over a
field F and let S be a finite subset of F . Sample values a1, a2, . . . , an from
S uniformly at random. Then,

Pr [p(a1, a2, . . . , an)] = 0] ≤ d/|S |.

A typical application

We can efficiently evaluate a polynomial p of degree d .

We want to test whether p is a non-zero polynomial.

Then, we pick S so that |S | ≥ 2d and we evaluate p on a random
vector x ∈ Sn. We answer YES iff we got p(x) 6= 0.

If p is the zero polynomial we always get NO, otherwise we get YES
with probability at least 1

2 .

This is called a Monte-Carlo algorithm with one-sided error.
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Schwartz-Zippel Lemma: Take-home message

Message

We can test whether a polynomial P is non-zero by a single evaluation of
P in a random vector.
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The Schwartz-Zippel Lemma: Example

Polynomial equality testing

Input: Two multivariate polynomials P,Q given as an arithmetic circuit.
Question: Does P ≡ Q?

Note: A polynomial described by an arithmetic circuit of size s can have
2Ω(s) different monomials: (x1 + x2)(x1 − x3)(x2 + x4) · · · .

Solution

Test whether the polynomial P − Q is non-zero using the Schwartz-Zippel
Lemma.

Theorem

Polynomial equality testing for two polynomials represented by circuits of
size at most s can be solved in O(s) time with a Monte Carlo algorithm
with one-sided error probability bounded by 1/2.
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Longest Path problem

Problem

Input: directed/undirected graph G , integer k .
Question: Does G contain a k-vertex path (shortly: k-path)?

Progress

Monien 1985: O(k!nO(1))

Alon, Yuster, Zwick 1994: O((2e)knO(1)) (color coding → Tuesday)

Kneis et al. 2006, Chen et al. 2007: O(4knO(1))
(divide-and-color → book)

Koutis 2008: O(23/2knO(1)) (group algebras → Friday)

Williams 2009: O(2knO(1)) (group algebras → Friday)
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Koutis 2008: O(23/2knO(1)) (group algebras → Friday)

Williams 2009: O(2knO(1)) (group algebras → Friday)

Björklund 2010: O(1.66nnO(1)), undirected Hamiltonian cycle (k = n)
(polynomials over finite fields of characteristic two)

Björklund, Husfeldt, Kaski, Koivisto 2010: O(1.66knO(1)), undirected
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Longest Path in time O(2kk|E |)
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Notation

[k] = {1, . . . , k}
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2k(kn)O(1)-time algorithm for Longest Path

Rough idea

Want to construct a polynomial P, P 6≡ 0 iff G has a k-path.

First try: P(· · · ) =
∑

k-path R in G

monomial(R).

Seems good, but how to evaluate it?

Second try: P(· · · ) =
∑

k-walk W in G

monomial(W ).

Now we can evaluate it but we may get false positives.

Final try: P(· · · ) =
∑

k-walk W in G

∑
`:[k]→[k]

` is bijective

monomial(w , `).

We still can evaluate it,
It turns out that every monomial corresponding to a walk which is not
a path appears an even number of times so it cancels-out!
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Our Hero

P(x, y) =
∑

walk W = v1, . . . , vk

∑
`:[k]→[k]

` is bijective

k−1∏
i=1

xvi ,vi+1

k∏
i=1

yvi ,`(i)︸ ︷︷ ︸
monW ,`

Variables:

a variable xe for every e ∈ E ,

a variable yv ,` for every v ∈ V and ` ∈ [k].
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Monomials corresponding to non-path walks cancel-out

Let W = v1, . . . , vk be a walk, and a bijection ` : [k]→ [k].

Assume va = vb for some a < b, if many such pairs take the
lexicographically first pair (a, b).

We define `′ : [k]→ [k] as follows:

`′(x) =


`(b) if x = a,

`(a) if x = b,

`(x) otherwise.

(W , `) 6= (W , `′) since ` is injective.

If we start from (W , `′) and follow the same way of assignment we
get (W , `) back. (This is called a fixed-point free involution)

Since the field is of characteristic 2, monW ,` and monW ,`′ cancel out!
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Half the way...

Corollary

If P 6≡ 0 then there is a k-path.
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The second half

Recall:

P(x, y) =
∑

walk W = v1, . . . , vk

∑
`:[k]→[k]

` is bijective

k−1∏
i=1

xvi ,vi+1

k∏
i=1

yvi ,`(i)︸ ︷︷ ︸
monW ,`

Question

Why do we need exactly monW ,` =
∏k−1

i=1 xvi ,vi+1

∏k
i=1 yvi ,`(i)?

What if, say, monW ,` =
∏k

i=1 yvi ,`(i)?

Answer

Now, every labelled walk which is a path gets a unique monomial.

Corollary

If there is a k-path in G then P 6≡ 0.

 Lukasz Kowalik (UW) Algebraic techniques II August 2014 17 / 46



The second half

Recall:

P(x, y) =
∑

walk W = v1, . . . , vk

∑
`:[k]→[k]

` is bijective

k−1∏
i=1

xvi ,vi+1

k∏
i=1

yvi ,`(i)︸ ︷︷ ︸
monW ,`

Question

Why do we need exactly monW ,` =
∏k−1

i=1 xvi ,vi+1

∏k
i=1 yvi ,`(i)?

What if, say, monW ,` =
∏k

i=1 yvi ,`(i)?

Answer

Now, every labelled walk which is a path gets a unique monomial.

Corollary

If there is a k-path in G then P 6≡ 0.

 Lukasz Kowalik (UW) Algebraic techniques II August 2014 17 / 46



The second half

Recall:

P(x, y) =
∑

walk W = v1, . . . , vk

∑
`:[k]→[k]

` is bijective

k−1∏
i=1

xvi ,vi+1

k∏
i=1

yvi ,`(i)︸ ︷︷ ︸
monW ,`

Question

Why do we need exactly monW ,` =
∏k−1

i=1 xvi ,vi+1

∏k
i=1 yvi ,`(i)?

What if, say, monW ,` =
∏k

i=1 yvi ,`(i)?

Answer

Now, every labelled walk which is a path gets a unique monomial.

Corollary

If there is a k-path in G then P 6≡ 0.

 Lukasz Kowalik (UW) Algebraic techniques II August 2014 17 / 46



Where are we?

Corollary

There is a k-path in G iff P 6≡ 0.

The missing element

How to evaluate P efficiently?
(2k(kn)O(1) is efficiently enough.)
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Weighted inclusion-exclusion

Let A1, . . . ,An ⊆ U, where U is a finite set.
Let w : U → F be a weight function.
For any X ⊆ U denote w(X ) =

∑
x∈X w(x).

Let us also denote
⋂

i∈∅(U − Ai ) = U.

Then,

w

⋂
i∈[n]

Ai

 =
∑
X⊆[n]

(−1)|X |w

(⋂
i∈X

(U − Ai )

)
.

Counting over a field of characteristic 2 we know that −1 = 1 so we can
remove the (−1)|X |:

w

⋂
i∈[n]

Ai

 =
∑
X⊆[n]

w

(⋂
i∈X

(U − Ai )

)
.
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Evaluating P(x, y) =
∑

walk W

∑
`:[k]→[k]

` is bijective

monW ,`(x, y)

Fix a walk W .

U = {` : [k]→ [k]} (all functions)
for ` ∈ U, define the weight w(`) = monW ,`(x, y).
for i = 1, . . . , k let Ai = {` ∈ U : `−1(i) 6= ∅}.
Then,∑

`:[k]→[k]
` is bijective

monW ,`(x, y) =
∑

`:[k]→[k]
` is surjective

monW ,`(x, y) =
∑

`∈
⋂k

i=1 Ai

monW ,`(x, y) = w(
k⋂

i=1

Ai ).

By weighted I-E,∑
`:[k]→[k]

` is surjective

monW ,`(x, y) =
∑
X⊆[k]

w

(⋂
i∈X

(U − Ai )

)
=

∑
X⊆[k]

∑
`:[k]→[k]\X

monW ,`(x, y)
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Evaluating P(x, y) =
∑

walk W

∑
`:[k]→[k]

` is bijective

monW ,`(x, y)

We got ∑
`:[k]→[k]

` is bijective

monW ,`(x, y) =
∑
X⊆[k]

∑
`:[k]→X

monW ,`(x, y)

Hence,

P(x, y) =
∑

walk W

∑
X⊆[k]

∑
`:[k]→X

monW ,`(x, y)

=
∑
X⊆[k]

∑
walk W

∑
`:[k]→X

monW ,`(x, y)

︸ ︷︷ ︸
PX (x,y)
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Evaluating PX (x, y) =
∑

walk W
of length k

∑
`:[k]→X

monW ,`(x, y) in nO(1)

We use dynamic programming. (How?)

Fill the 2-dimensional table T ,

T [v , d ] =
∑

walk W = v1, . . . , vd
v1 = v

∑
`:[k]→X

d−1∏
i=1

xvi ,vi+1

d∏
i=1

yvi ,`(i)

Then,

T [v , d ] =


∑
l∈X

yvl when d = 1,∑
l∈X

yvl
∑

(v ,w)∈E

xvw · T [w , d − 1] otherwise.

Hence, PX (x, y) =
∑
s∈V

T [s, k] can be computed in O(k|E |) time.
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Cost of arithmetic

P(x, y) =
∑

walk W = v1, . . . , vk

∑
`:[k]→[k]

` is bijective

k−1∏
i=1

xvi ,vi+1

k∏
i=1

yvi ,`(i)︸ ︷︷ ︸
monW ,`

Degree of P is 2k − 1.

Pick a field F of size 2dlog(4k)e > 4k.

Sample values of variables from set S = F .

By Schwartz-Zippel Lemma, false-negatives with probability at most
(2k − 1)/(4k) ≤ 1/2

Arithmetic in O(log k(log log k)2) time (cheap!).
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Conclusion

Corollary

Longest Path can be solved by a O(2kk log k(log log k)2|E |)-time
polynomial space one-sided error Monte-Carlo algorithm.

Finding k-paths in a 1000-vertex graph on a 2.53-GHz Intel Xeon CPU:

7 9 11 13 15 17
k (path size)

10-2

10-1

100

101

R
u
n
n
in

g
 t

im
e
 [

s]

0.01s

0.03s

0.1s

0.3s

1s

3s

10s

1min
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Longest Path in undirected
bipartite graphs in 2k/2(kn)O(1)

time
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Longest Path in undirected bipartite graphs in

2k/2(kn)O(1) time

V1

V2
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A new hero

Idea

Label vertices of V1 only.

P(x, y) =
∑

walk W = v1, . . . , vk

∑
`:[k/2]→[k/2]
` is bijective

k−1∏
i=1

xvi ,vi+1

k/2∏
i=1

yv2i−1,`(i)︸ ︷︷ ︸
monW ,`

Variables:

a variable xe for every e ∈ E (xuv = xvu),

a variable yv ,` for every v ∈ V1 and ` ∈ [k/2].
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Checking the hero

P(x, y) =
∑

walk W = v1, . . . , vk

∑
`:[k/2]→[k/2]
` is bijective

k−1∏
i=1

xvi ,vi+1

k/2∏
i=1

yv2i−1,`(i)︸ ︷︷ ︸
monW ,`

Paths do not cancel-out

If there is a k-path with an endpoint in V1 then P 6≡ 0.
(Proof: We can recover (W , `) from monW ,` as before.)
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Checking the hero

P(x, y) =
∑

walk W = v1, . . . , vk

∑
`:[k/2]→[k/2]
` is bijective

k−1∏
i=1

xvi ,vi+1

k/2∏
i=1

yv2i−1,`(i)︸ ︷︷ ︸
monW ,`

Do non-path walks cancel-out?

Consider a non-path labelled walk (W , `), W = v1, . . . , vk .
Case 1 If exist i , j , i < j s.t. vi = vj , vi ∈ V1:

pick lexicographically first such pair;
both vi and vj have labels so we swap labels as before.

Case 2 As in Case 1, but vi ∈ V2 and Case 1 does not occur:
reverse the cycle:

W

vi = vj

W ′

vi = vj

`1`2 `1`2 monW ,` = monW ′,`′ ,

from (W ′, `′) we get (W , `),

Does (W , `) 6= (W ′, `′) ?
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Checking the hero

P(x, y) =
∑

walk W = v1, . . . , vk

∑
`:[k/2]→[k/2]
` is bijective

k−1∏
i=1

xvi ,vi+1

k/2∏
i=1

yv2i−1,`(i)︸ ︷︷ ︸
monW ,`

Do non-path walks cancel-out?

Consider a non-path labelled walk (W , `), W = v1, . . . , vk .
Case 1 If exist i , j , i < j s.t. vi = vj , vi ∈ V1:

pick lexicographically first such pair;
both vi and vj have labels so we swap labels as before.

Case 2 As in Case 1, but vi ∈ V2 and Case 1 does not occur:
reverse the cycle:

W

vi = vj

W ′

vi = vj

monW ,` = monW ′,`′ ,

from (W ′, `′) we get (W , `),

Does (W , `) 6= (W ′, `′) ? NO!
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Fixing the hero

Admissible walks

Walk v1, . . . , vk is admissible if:
For every i = 1, . . . , k − 2, if vi ∈ V2 and vi+1 ∈ V1 then vi+2 6= vi .

P(x, y) =
∑

walk W = v1, . . . , vk
W is admissible

∑
`:[k/2]→[k/2]
` is bijective

k−1∏
i=1

xvi ,vi+1

k/2∏
i=1

yv2i−1,`(i)︸ ︷︷ ︸
monW ,`
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Checking the fixed hero

P(x, y) =
∑

walk W = v1, . . . , vk
W is admissible

∑
`:[k/2]→[k/2]
` is bijective

k−1∏
i=1

xvi ,vi+1

k/2∏
i=1

yv2i−1,`(i)︸ ︷︷ ︸
monW ,`

Do non-path walks cancel-out?

Consider a non-path labelled walk (W , `), W = v1, . . . , vk .
Case 1 If exist i , j , i < j s.t. vi = vj , vi ∈ V1:

pick lexicographically first such pair;
both vi and vj have labels so we swap labels as before.

Case 2 As in Case 1, but vi ∈ V2 and Case 1 does not occur:
reverse the cycle:

W

vi = vj

W ′

vi = vj

`1`2 `1`2

monW ,` = monW ′,`′ ,

from (W ′, `′) we get (W , `),

(W , `) 6= (W ′, `′) because W
admissible,

W ′ is admissible.
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Evaluating P(x, y) =
∑

admissible walk W

∑
`:[k/2]→[k/2]
` is bijective

monW ,`(x, y)

As before, from inclusion-exclusion principle we can get∑
`:[k/2]→[k/2]
` is bijective

monW ,`(x, y) =
∑

X⊆[k/2]

∑
`:[k/2]→X

monW ,`(x, y)

Hence, as before:

P(x, y) =
∑

admissible walk W

∑
X⊆[k/2]

∑
`:[k/2]→X

monW ,`(x, y)

=
∑

X⊆[k/2]

∑
admissible walk W

∑
`:[k/2]→X

monW ,`(x, y)

︸ ︷︷ ︸
PX (x,y)

Note: Only 2k/2 polynomials PX to evaluate.
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Evaluating PX (x, y) =
∑

admissible
walk W

of length k

∑
`:[k/2]→X

monW ,` in poly-time

Dynamic programming:

T [v ,w , d ] =
∑

admissible walk
W = v1, . . . , vd

v1 = v
v2 = w

∑
`:[k/2]→X

k−1∏
i=1

xvi ,vi+1

k/2∏
i=1

yv2i−1,`(i)

Then,

T [v ,w , d ] =



xvw
∑

l∈X yvl when d = 2 and v ∈ V1,

xvw
∑

l∈X ywl when d = 2 and v ∈ V2,∑
l∈X

yvl
∑

(w ,u)∈E

xvw · T [w , u, d − 1] when d > 2 and v ∈ V1,∑
(w ,u)∈E
u 6=v

xvw · T [w , u, d − 1] when d > 2 and v ∈ V2.
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Conclusion

Theorem (Björklund, Husfeldt, Kaski, Koivisto 2010)

Longest Path in undirected bipartite graphs can be solved in
2k/2(kn)O(1) = 1.42k(kn)O(1) time and polynomial space.

 Lukasz Kowalik (UW) Algebraic techniques II August 2014 35 / 46



Conclusion

Theorem (Björklund, Husfeldt, Kaski, Koivisto 2010)

Longest Path in undirected bipartite graphs can be solved in
2k/2(kn)O(1) = 1.42k(kn)O(1) time and polynomial space.

 Lukasz Kowalik (UW) Algebraic techniques II August 2014 35 / 46



Longest Path in undirected
graphs in 2

3
4k(kn)O(1) time
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Longest Path in undirected graphs in 2
3
4k(kn)O(1) time

Choose a random bipartition V = V1 ∪ V2, ||V1| − |V2|| ≤ 1.
(V1 and V2 need not be independent now.)

Where does the bipartite case algorithm fail?

W

vi = vj

W ′

vi = vj

Then (W , `) = (W ′, `′).

What if we forbid also ?

Then we run into another trouble:

W W ′

W ′ contains the forbidden configuration.
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The solution

Forbidden configuration as before:

Add more labels:
label each V2V2-edge:

W

vi = vj vi = vj

W ′

`2 `1 `2 `1

Now `′ 6= `.
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How many labels do we need now?

a different label for each i = 1, . . . , k s.t. vi ∈ V1

a different label for each i = 1, . . . , k s.t. vi , vi+1 ∈ V2
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L-admissible walks

Walk W = v1, . . . , vk is L-admissible when

For every i = 1, . . . , k − 2, if vi ∈ V2 and vi+1 ∈ V1 then vi+2 6= vi .

|{i : vi ∈ V1}|+ |{i : vivi+1 ∈ V2}| = L
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The ultimate hero

PL(x, y) =
∑

walk W = v1, . . . , vk
W is L-admissible

∑
`:[L]→[L]

` is bijective

k−1∏
i=1

xvi ,vi+1

L∏
i=1

yf (i),`(i),

where f (i) = i-th labeled object (V1-vertex or V2V2-edge) in walk W .

f (1) f (2)

f (3)

f (5) f (4)

f (6)

P =

d 3
4
ke∑

L=k/2

PL
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Correctness

We have checked that:
P 6≡ 0 ⇒ exists k-path
(i.e. non-path walks cancel-out)

The opposite implication not always true! (why?)
it may happen that the only (say) solution P is not L-admissible for
all L ≤ d3

4ke.
But...

E[|{i : vi ∈ V1}|+ |{i : vivi+1 ∈ V2}|] = k
2 + k−1

4 = 3k−1
4

So, by Markov inequality

Pr [P is not L-admissible for all L ≤ d3
4ke] ≤

(3k − 1)/4

d3
4ke+ 1

= 1−1/O(k)

If we repeat the algorithm k log n times this probability drops to

(1− 1/O(k))k log n = (e−1/O(k))k log n = e−O(log n) = 1/nΩ(1)
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Conclusion

Theorem (Björklund, Husfeldt, Kaski, Koivisto 2010)

Longest Path in undirected graphs can be solved in
23k/4 = 1.682k(kn)O(1) time and polynomial space.

Note: using a simple trick one can tune the algorithm to get 1.66knO(1).

Corollary (Björklund 2009)

The Hamiltonian Cycle problem in undirected graphs can be solved in
1.66knO(1) time and polynomial space.
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More applications of the same technique

3-dimensional matching,

k-packing,

edge coloring,

Steiner cycle (aka K -cycle),

rural postman,

graph motif and related problems,

. . .
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Open problems

Improve over O(1.66n) for Hamiltonian cycle in undirected graphs

Get O(1.99n) for Hamiltonian cycle in directed graphs.

Faster deteministic algorithms for Longest Path (Best known:
2.86knO(1), Fomin, Lokshtanov, Saurabh 2013)
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Exercises

(Ex 10.16, l) Show an algorithm running in time 2k(nk)O(1) and
polynomial space for finding a colorful k-path in a vertex colored
graph.

(Ex 10.17) Extend the 2k(nk)O(1) algorithm for k-path to weighted
case for weight function w : E → [W ]. Your algorithm should run in
time 2kW (nk)O(1).

(Ex 10.18) Show a 23k(nk)O(1) algorithm which determines if a given
graph contains k vertex disjoint triangles.
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