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Field is a triple (F,+,-), where

F is a set, + and - are binary operations

associativity: (a+b)+c=a+(b+c), (a-b)-c=a-(b-¢)
commutativity: a+b=b+a, a-b=b-a

distributivity: a-(b+c)=a-b+a-c.

additive identity: 30€ Fst. 0+a=a.

multiplicative identity: 31 € Fs.t. Vae F\{0}: 1-a=a.
additive inverses: Vae F3dbe Fst. a+ b=0;

multiplicative inverses: Va€ F\ {0} 3be Fst. a-b=1,

Some familiar (infinite) fields: Q, R, C.
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Finite fields of characteristic 2

In what follows, we use finite fields of size |F| = 2¢.
We need to know just three things about such fields:
@ They exist (for every ¢ € N),

@ We can perform arithmetic operations fast, in O(log |F|(log log |F|)?)
time,

@ They are of characteristic two, i.e. 14+1=0.
In particular, for any element a, we have

ata=a-(1+41)=a-0=0
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Multivariate polynomials

Fix a field F.

Monomial

Monomial is an expression of the form m = ax;*x52 - - - x5, where
@acFkF
@ Xx1,...,Xp are variables
@ cy,...,cn € NU{0}.

Degree of mis >." ; ¢;.

Examples:

5x3x4 (degree 10),
X1X2X3 *+ - X2014 (degree 2014),
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Multivariate polynomials

Polynomial

A polynomial is a finite sum of monomials.
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Multivariate polynomials

Polynomial

A polynomial is a finite sum of monomials.

Polynomial (more precisely)

A polynomial an expression of the form

p= Z acl,...,chfIX2C2 e Xﬁ”’ (1)
(c1,.--,cn)E(NU{0})"

where the coefficients ac, .. ¢, are non-zero only for a finite number of
tuples (c1,...,¢n).

Degree of p is the maximum degree of its monomials.
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Multivariate polynomials

Examples:

X1 + X2 (degree 1),

X3xo + 534 — x1X5x3 (degree 10),
X1X2X3 *+* X2014 (degree 2014),
0 (the zero polynomial).
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The Schwartz-Zippel Lemma

Lemma [DeMillo and Lipton 1978, Zippel 1979, Schwartz 1980]

Let p(x1,x2,...,Xn) be a non-zero polynomial of degree at most d over a
field F and let S be a finite subset of F. Sample values a1, a, ..., a, from
S uniformly at random. Then,

Prip(a1, az,...,a,)] = 0] < d/|S].
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The Schwartz-Zippel Lemma

Lemma [DeMillo and Lipton 1978, Zippel 1979, Schwartz 1980]

Let p(x1,x2,...,Xn) be a non-zero polynomial of degree at most d over a
field F and let S be a finite subset of F. Sample values a1, a, ..., a, from
S uniformly at random. Then,

Prip(a1, a2,...,a,)] =0] < d/|S|.

| \

A typical application
@ We can efficiently evaluate a polynomial p of degree d.
o We want to test whether p is a non-zero polynomial.
@ Then, we pick S so that |S| > 2d and we evaluate p on a random
vector x € S”. We answer YES iff we got p(x) # 0.

o If p is the zero polynomial we always get NO, otherwise we get YES
with probability at least %

@ This is called a Monte-Carlo algorithm with one-sided error.

V.
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Schwartz-Zippel Lemma: Take-home message

Message

We can test whether a polynomial P is non-zero by a single evaluation of
P in a random vector.
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The Schwartz-Zippel Lemma: Example

Polynomial equality testing

INPUT: Two multivariate polynomials P, Q given as an arithmetic circuit.
QUESTION: Does P = Q7

Note: A polynomial described by an arithmetic circuit of size s can have
29%s) different monomials: (x1 + x2)(x1 — x3)(x2 + xa) - - -
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The Schwartz-Zippel Lemma: Example

Polynomial equality testing

INPUT: Two multivariate polynomials P, Q given as an arithmetic circuit.
QUESTION: Does P = Q7

Note: A polynomial described by an arithmetic circuit of size s can have
29%s) different monomials: (x1 + x2)(x1 — x3)(x2 + xa) - - -

Test whether the polynomial P — @ is non-zero using the Schwartz-Zippel
Lemma.

4
Theorem

Polynomial equality testing for two polynomials represented by circuits of
size at most s can be solved in O(s) time with a Monte Carlo algorithm
with one-sided error probability bounded by 1/2.

v
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LONGEST PATH problem

Problem

INPUT: directed/undirected graph G, integer k.
QUESTION: Does G contain a k-vertex path (shortly: k-path)?
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LONGEST PATH problem

INPUT: directed/undirected graph G, integer k.
QUESTION: Does G contain a k-vertex path (shortly: k-path)?

v

Progress
o Monien 1985: O(k!n°M)
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Progress
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QUESTION: Does G contain a k-vertex path (shortly: k-path)?
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LONGEST PATH problem

INPUT: directed/undirected graph G, integer k.
QUESTION: Does G contain a k-vertex path (shortly: k-path)?

v

Progress

o Monien 1985: O(k!n°M)
@ Alon, Yuster, Zwick 1994: O((2e)kn0(1)) (color coding — Tuesday)

o Kneis et al. 2006, Chen et al. 2007: O(4kn°()
(divide-and-color — book)

o Koutis 2008: O(23/2n°())  (group algebras — Friday)
o Williams 2009: O(2Xn°("))  (group algebras — Friday)

o Bjorklund 2010: O(1.66"n°(), undirected Hamiltonian cycle (k = n)
(polynomials over finite fields of characteristic two)

e Bjorklund, Husfeldt, Kaski, Koivisto 2010: O(1.66kn0(1)), undirected

v
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LONGEST PATH in time O(2*k|E|)
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k] = {1,... k)
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2K(kn)%(W-time algorithm for LONGEST PATH

Rough idea

@ Want to construct a polynomial P, P # 0 iff G has a k-path.
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2K(kn)%(W-time algorithm for LONGEST PATH

Rough idea
@ Want to construct a polynomial P, P # 0 iff G has a k-path.
o First try: P(---) = Z monomial(R).
k-path R in G
Seems good, but how to evaluate it?
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2K(kn)%(W-time algorithm for LONGEST PATH

Rough idea

@ Want to construct a polynomial P, P # 0 iff G has a k-path.

o First try: P(---) = Z monomial(R).
k-path R in G
Seems good, but how to evaluate it?
e Second try: P(---) = Z monomial(W).

k-walk W in G .
Now we can evaluate it but we may get false positives.
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2K(kn)%(W-time algorithm for LONGEST PATH

Rough idea

@ Want to construct a polynomial P, P # 0 iff G has a k-path.

o First try: P(---) = Z monomial(R).
k-path R in G
Seems good, but how to evaluate it?

@ Second try: P(---) = Z monomial(W).

k-walk W in G .
Now we can evaluate it but we may get false positives.

e Final try: P(---) = Z Z monomial(w, ¢).
k-walk W in G ¢:[k]—[K]
£ is bijective
o We still can evaluate it,
o It turns out that every monomial corresponding to a walk which is not
a path appears an even number of times so it cancels-out!
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’D(x7y) = Z Z H Xv;,Vit1 H.yv,,f( i)

walk W =vy,..., v C[k]—[k] i=1
£ is bijective

monyy ¢

Variables:

@ a variable x, for every e € E,
@ a variable y, , for every v € V and ¢ € [k].
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Monomials corresponding to non-path walks cancel-out

o Let W = wy,...,vx be a walk, and a bijection ¢ : [k] — [K].
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Monomials corresponding to non-path walks cancel-out

o Let W = wy,...,vx be a walk, and a bijection ¢ : [k] — [K].
@ Assume v, = v, for some a < b, if many such pairs take the
lexicographically first pair (a, b).
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Monomials corresponding to non-path walks cancel-out

o Let W = vi,..., v be a walk, and a bijection ¢ : [k] — [K].

@ Assume v, = v, for some a < b, if many such pairs take the
lexicographically first pair (a, b).

o We define ¢' : [k] — [K] as follows:

b) if x=a,
l'(x) =< ¢(a) if x=h,
{(x) otherwise.
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Monomials corresponding to non-path walks cancel-out

o Let W = vq,..., vk be a walk, and a bijection ¢ : [k] — [k].

@ Assume v, = v, for some a < b, if many such pairs take the
lexicographically first pair (a, b).

o We define ¢ : [k] — [k] as follows:

b) if x = a,
l'(x) =< 4(a) if x=b,
¢(x) otherwise.

o (W,0) # (W, since { is injective.

k—1 k
@ mony g = H Xv;,vii1 Hyv,.,g(,-) =
i=1 i=1

k—1
H Xvi,vig H Yvi 0(i) Yva,t(a) Yvp,(b) = MONy ¢/
i=1 ie[k]\{a.b} R

Yt/ (b) Yvat!(a)
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Monomials corresponding to non-path walks cancel-out

o Let W = vi,..., v be a walk, and a bijection ¢ : [k] — [K].

@ Assume v, = v, for some a < b, if many such pairs take the
lexicographically first pair (a, b).

o We define ¢' : [k] — [K] as follows:

b) if x=a,
l'(x) =< ¢(a) if x=h,
{(x) otherwise.

o (W,0) # (W, since  is injective.
@ monw ¢ = monyy ¢
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Monomials corresponding to non-path walks cancel-out

o Let W = vi,..., v be a walk, and a bijection ¢ : [k] — [K].
@ Assume v, = v, for some a < b, if many such pairs take the
lexicographically first pair (a, b).

We define ¢’ : [k] — [K] as follows:

b) if x=a,
l'(x) =< ¢(a) if x=h,
{(x) otherwise.

(W, 0) £ (W, ?) since £ is injective.

monwy ¢ = monyy g

If we start from (W, ¢’) and follow the same way of assignment we
get (W, /) back. (This is called a fixed-point free involution)
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Monomials corresponding to non-path walks cancel-out

o Let W = vi,..., v be a walk, and a bijection ¢ : [k] — [K].
@ Assume v, = v, for some a < b, if many such pairs take the
lexicographically first pair (a, b).

We define ¢’ : [k] — [K] as follows:

b) if x=a,
l'(x) =< ¢(a) if x=h,
{(x) otherwise.

(W, 0) £ (W, ?) since £ is injective.

monwy ¢ = monyy g

If we start from (W, ¢’) and follow the same way of assignment we
get (W, /) back. (This is called a fixed-point free involution)

Since the field is of characteristic 2, monyy , and monyy ¢ cancel out!
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Half the way...

If P = 0 then there is a k-path.
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The second half

V. Be

Recall:

5

Py = 3 >0 vr’v'HHWU

walk W =vy,..., v L[k]—[k] i=1
£ is bijective

monyy ¢

k—1

Why do we need exactly monyy ¢ = [[;27 Xv; v, Hfle Yoi(i)?
What if, say, mony » = H,’le Yoiu(i)?
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k—1
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Now, every labelled walk which is a path gets a unique monomial.
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The second half

VX

SO SR o v~v'+1HyV~f<>

walk W =vy,..., v L[k]—[k] i=1
£ is bijective

Recall:

monyy ¢

k—1 k
Why do we need exactly mony ¢ = [T;Z7 xv s TTim1 Yuie0)?

What if, say, mony » = H,’le Yoiu(i)?

Now, every labelled walk which is a path gets a unique monomial.

If there is a k-path in G then P % 0.
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There is a k-path in G iff P # 0. \

The missing element

How to evaluate P efficiently?
(2%(kn)O() is efficiently enough.)

tukasz Kowalik (UW Algebraic techniques Il August 2014 18 / 46
2



Weighted inclusion-exclusion

Let A1,..., A, C U, where U is a finite set.
Let w : U — F be a weight function.

For any X C U denote w(X) = 3" _x w(x).
Let us also denote (;c4(U — A;) = U.

Then,

w [)A :Z(—l)x|w<ﬂ(U—A;)>.

i€[n] XC[n] ieX
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Weighted inclusion-exclusion

Let A1,..., A, C U, where U is a finite set.
Let w : U — F be a weight function.

For any X C U denote w(X) = 3" _x w(x).
Let us also denote (;c4(U — A;) = U.

Then,
wl [)A] = Z(—1)X|W<Q(U—A,-)>.
i€[n] XC[n] ieX

Counting over a field of characteristic 2 we know that —1 = 1 so we can
remove the (—1)IXI:

wl (A] =) W<ﬂ(U—A,-)).

ie[n] XC|[n] ieX
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Evaluating P(x,y) = Z E mony ¢(X, y)

walk W £:[k]—[k]
¢ is bijective

Fix a walk W.
o U={l:[k] — [K]} (all functions)
o for £ € U, define the weight w(¢) = monyy ¢(x,y).
o fori=1,....klet Ai={0ec U : (71(i) # 0}.

o Then, .

Z mony ¢(X,y) Zmonwg(x y) Zmonngy)—w(ﬂ
CK 1] K= [K] e, A =1
£ is bijective £ is surjective

o By weighted I-E,

Y. monwe(xy)= ) w<ﬂ(U—A,)> —

£:[k]—[k] XC[K] ieX
£ is surjective

Yo D monwu(xy)

XC[k] :[k]— K\ X
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¢ is bijective

Fix a walk W.
o U={l:[k] — [K]} (all functions)
o for £ € U, define the weight w(¢) = monyy ¢(x,y).
o fori=1,....klet Ai={0ec U : (71(i) # 0}.

o Then, .

Z mony ¢(X,y) Zmonwg(x y) Zmonngy)—w(ﬂ
CK 1] K= [K] e, A =1
£ is bijective £ is surjective

o By weighted I-E,

Y. monwe(xy)= ) w<ﬂ(U—A,)> —

£:[k]—[k] XC[K] ieX
£ is surjective

Y. > monw(x.y)

XC[K] £:[k]—X
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Evaluating P(x,y) = Z E mony ¢(X, y)

walk W £:[k]—[k]
¢ is bijective

We got
> monwa(xy)= > Y monw(x,y)
AGING XC[k] £:[K]—X
£ is bijective
Hence,

P(x,y) = Z Z Z monw (X, y)

walk W XC[k] £:[k]—=X

= > > D monwulxy)

XC[k] walk W £:[k]—X

Px(X,y)
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Evaluating Px(x,y) :Z Emonwf(x,y) in n°(1)

walk W ¢:[k]—X
of length k

We use dynamic programming. (How?)
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Evaluating Px(x,y) Z Zmonw,( x,y) in n®

walk W ¢:[k]—X
of length k

We use dynamic programming. (How?)
Fill the 2-dimensional table T,

Tlvdl= ) > HXvnv,ﬂHM

walk W =vy,...,vq L:[k] =X i=1

Vi =V

Then,

ZYVI when d =1,

Tlv. dl = leX
.l Zy\// Z Xuw - T[w,d —1] otherwise.

leX (v,w)eE

Hence, Px(x,y) = Z T[s, k] can be computed in O(k|E|) time.
seV
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Cost of arithmetic

S Y

5 N

’D(x7y) = Z Z H Xv; Vi1 Hyv,,f()

walk W =wvy,..., v L[k]—[k] i=1
£ is bijective

monyy ¢

@ Degree of Pis 2k — 1.
o Pick a field F of size 2/1e(4K)1 > 4k
@ Sample values of variables from set S = F.

@ By Schwartz-Zippel Lemma, false-negatives with probability at most
(2k —1)/(4k) <1/2
o Arithmetic in O(log k(log log k)?) time (cheap!).
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Conclusion

LONGEST PATH can be solved by a O(2Xk log k(log log k)?|E|)-time
polynomial space one-sided error Monte-Carlo algorithm.
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Conclusion

LONGEST PATH can be solved by a O(2Xk log k(log log k)?|E|)-time
polynomial space one-sided error Monte-Carlo algorithm.

Finding k-paths in a 1000-vertex graph on a 2.53-GHz Intel Xeon CPU:

1min

Running time [s]

0.03s

40.01s

H L H H H H
7 9 11 13 15 17
k (path size)
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LONGEST PATH in undirected
bipartite graphs in 2k/2(kn)0(1)
time
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LONGEST PATH in undirected bipartite graphs in

2k12(kn)O() time

Vs
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A new hero

Label vertices of V4 only. l

k/2

P(x,y) = Z Z H Xvi,Vig1 Hva, 1.t

walk W =wvq,..., v ¢ [k/2]—>[k/2] i=1

£ is bijective ~~
monyy ¢
T

welily

Variables:

@ a variable x, for every e € E (xy, = Xyu),

@ a variable y, ; for every v € V; and ¢ € [k/2].
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Checking the hero

k)2

P(x,y) = Z Z H Xvi,Vig1 Hsz 1,€(7)

walk W = v, ..., v £:[k/2]—[k/2] i=1
£ is bijective ~~
monyy ¢

Paths do not cancel-out

If there is a k-path with an endpoint in V; then P # 0.
(Proof: We can recover (W, ¢) from monyy ¢ as before.)
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Checking the hero

k/2

P(x,y) = Z Z H Xvi Vi1 Hyvzl 14

walk W= vi,..., v £:[k/2]—[k/2] i=1
£ is bijective

monyy ¢

Do non-path walks cancel-out?
Consider a non-path labelled walk (W, ¢), W = wq,..., v.
Case 1 Ifexist i,j, i <js.t. vi=yvj, v;e€ Vi

pick lexicographically first such pair;

both v; and v; have labels so we swap labels as before.

Case 2 As in Case 1, but v; € V5 and Case 1 does not occur:
reverse the cycle:

G » (1 e mony ¢ = monyy g,
W W’ o from (W', ¢) we get (W, ¢),
o Does (W,0) £ (W', ¢) 7

Vi = Vj Vi = Vj

v
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Checking the hero

k/2

P(X7y) - Z Z H Xvi Vit Hyvm 1,¢

walk W = vy,..., v £ [k/2]%[k/2] i=1

£ is bijective ~~
monyy ¢

Do non-path walks cancel-out?

Consider a non-path labelled walk (W, ¢), W = vy, ..., v.
Case 1 Ifexist i,j, i <js.t. vi=yv, v;€ Vi

pick lexicographically first such pair;

both v; and v; have labels so we swap labels as before.

Case 2 Asin Case 1, but v; € V, and Case 1 does not occur:
reverse the cycle:

W . W' e monw ¢ = mony: g,
\Q‘ 'Q/ o from (W', ¢) we get (W, ¢),
vi= VY iV Does (W, 0) # (W, ) 7 NO!
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Fixing the hero

Admissible walks

Walk vy, ..., vk is admissible if:
Forevery i =1,...

k=2, ifvi e Vp and vj11 € Vi then viyo # v;.

k/2

P(x,y) = Z Z H Xvi,vit1 Hyvzf 1,£(7)

walk W =i, .., v £: [k/2]—>[k/2] i=1
W is admiSS|b|e ¢ is bijective

monyy ¢
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Checking the fixed hero

k)2

P(x,y) = Z Z H Xvi,Vis1 HyVZI 1,4(7)

walk W= v, ..., v £:[k/2]—[k/2] i=1
W is admi55|b|e £ is bijective N~
monyy ¢

Do non-path walks cancel-out?
Consider a non-path labelled walk (W, £¢), W = vq,..., v.
Case 1 Ifexist i,j, i <js.t. vi=yvj, v; € Vi

pick lexicographically first such pair;

both v; and v; have labels so we swap labels as before.
Case 2 As in Case 1, but v; € V5 and Case 1 does not occur:

reverse the cycle:

@ monw ¢ = monyy: g,
4 4
! ‘ ! o from (W', ¢) we get (W, ¥4),
w w’ o (W,0)# (W', ¢') because W
= = admissible,

Vi =V Vi =V

o W' is admissible.
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Evaluating P(x,y) = Z Z mony ¢(x, y)

admissible walk W ¢:[k/2]—[k/2]
¢ is bijective

As before, from inclusion-exclusion principle we can get

Z mony ¢(x,y) = Z Z mon ¢(X, )

L:[k/2]—[k/2] XC[k/2] t:[k/2] =X
£ is bijective

Hence, as before:

P(va) = Z Z Z monW,E(xvy)

admissible walk W XC[k/2] ¢:[k/2]—X

= Y > D> monw(x,y)
XClk/2] admissible walk W ¢:[k/2]—X

PX(X»y)

Note: Only 2¥/2 polynomials Px to evaluate.
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Evaluating Px(x,y) :Z Z monyy ¢ in poly-time

l:[k/2]—X
walk W
of length k

Dynamic programming;:
k/2

Tlv,w,d] = Z Z H Xvi,Vig1 Hyvzl 1,£(7)

admissible walk £:[k/2]—X i=1

=Vi,..., Vg
Then, mow
(
Xow D jex Yl when d =2 and v €
Xow Y 1ex Ywi when d =2 and v €
Xyw - T[w,u,d—1] whend>2andve
T[V, w, d] _ Zyvlz vw [ » Uy ]
leX (w,u)eE
Z Xow - T[w,u,d—1] when d >2and v €
(w,u)eE
u#v
tukasz Kowalik (UW) Algebraic techniques Il August 2014
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Conclusion

Theorem (Bjorklund, Husfeldt, Kaski, Koivisto 2010)

LONGEST PATH in undirected bipartite graphs can be solved in
2K/2(kn)©O() = 1.42K(kn)°() time and polynomial space.
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LONGEST 3PATH in undirected
graphs in 28%(kn)O(1) time
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LONGEST PATH in undirected graphs in 2% (kn)°® time

@ Choose a random bipartition V =V, U V5, ||Vi| — |V2]| < 1.
(V4 and V4 need not be independent now.)

@ Where does the bipartite case algorithm fail?

O A

Vi =Vj Vi =V

Then (W, £) = (W', £').
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LONGEST PATH in undirected graphs in 2% (kn)°® time

@ Choose a random bipartition V =V, U V5, ||Vi| — |V2]| < 1.
(V4 and V4 need not be independent now.)

@ Where does the bipartite case algorithm fail?

O A

Vi =Vj Vi =V

Then (W, £) = (W', £').

@ What if we forbid also »@—y?
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LONGEST PATH in undirected graphs in 2% (kn)°® time

@ Choose a random bipartition V =V, U V5, ||Vi| — |V2]| < 1.
(V4 and V4 need not be independent now.)

@ Where does the bipartite case algorithm fail?

O A

Vi =Vj Vi =V

Then (W, £) = (W', £').

@ What if we forbid also »@—y?

@ Then we run into another trouble:

o

W' contains the forbidden configuration.
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The solution

@ Forbidden configuration as before:

@ Add more labels:
label each V5 V5-edge:

W W
zz@ﬁl » @@ﬁl

Vi =Vj Vi =V

Now ¢/ £ ¢.
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How many labels do we need now?

o a different label foreach i=1,... , kst. vie V;

o a different label for each i =1,... ks.t. vj,vi;1 € Vo
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L-admissible walks

Walk W = vy, ..., vk is L-admissible when

@ Forevery i=1,...,k—2,if v € V, and vj11 € Vj then vj1o # v;.

o [{i : vieVi}+{i : vivijr € Vo}| =1L
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The ultimate hero

k—1 L
Pulxy) = ) DR | Evvny § SO0}
i1

walk W =vy,..., v £[L]—[L] i=1
W is L-admissible ¢ is bijective

where (i) = i-th labeled object (V;-vertex or V; V;-edge) in walk W.

f(3)
FO)WAT(4)
f(1) f(2)
341
P=> P
L=k/2
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Correctness

@ We have checked that:
P # 0 = exists k-path
(i.e. non-path walks cancel-out)
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Correctness

@ We have checked that:
P # 0 = exists k-path
(i.e. non-path walks cancel-out)

@ The opposite implication not always true! (why?)
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Correctness

@ We have checked that:
P # 0 = exists k-path
(i.e. non-path walks cancel-out)
@ The opposite implication not always true! (why?)
it may happen that the only (say) solution P is not L-admissible for
all L < [3k].
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Correctness

@ We have checked that:
P # 0 = exists k-path
(i.e. non-path walks cancel-out)
@ The opposite implication not always true! (why?)
it may happen that the only (say) solution P is not L-admissible for
all L < [3k].
e But...
o E[l{i : vie Vi +|{i : vivigr € Vo}|] = & + K1 = 3L
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Correctness

@ We have checked that:
P # 0 = exists k-path
(i.e. non-path walks cancel-out)
@ The opposite implication not always true! (why?)
it may happen that the only (say) solution P is not L-admissible for
all L < [3k].
e But...
o E[l{i : vie Vi +|{i : vivigr € Vo}|] = & + K1 = 3L
@ So, by Markov inequality

(3k—1)/4

Pr[P is not L-admissible for all L < [3k]] <
r[P is not L-admissible for all L < [7k]] < [%H—i—l

=1-1/0(k)
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Correctness

@ We have checked that:
P # 0 = exists k-path
(i.e. non-path walks cancel-out)

@ The opposite implication not always true! (why?)
it may happen that the only (say) solution P is not L-admissible for
all L < [3k].
e But...
o E[l{i : vie Vi +|{i : vivigr € Vo}|] = & + K1 = 3L
@ So, by Markov inequality

(3k—1)/4

Pr[P is not L-admissible for all L < [3k]] <
r[P is not L-admissible for all L < [7k]] < [%H—i—l

=1-1/0(k)

o If we repeat the algorithm klog n times this probability drops to
(1 o 1/O(k))klogn — (efl/O(k))klogn — efO(Iogn) — l/nQ(l)
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Conclusion

Theorem (Bjorklund, Husfeldt, Kaski, Koivisto 2010)

LONGEST PATH in undirected graphs can be solved in
23k/4 = 1.682%(kn)°() time and polynomial space.
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Conclusion

Theorem (Bjorklund, Husfeldt, Kaski, Koivisto 2010)

LONGEST PATH in undirected graphs can be solved in
23k/4 = 1.682%(kn)°() time and polynomial space.

Note: using a simple trick one can tune the algorithm to get 1.66Xn°(1).

Corollary (Bjorklund 2009)

The Hamiltonian Cycle problem in undirected graphs can be solved in
1.66Xn°() time and polynomial space.
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More applications of the same technique

3-dimensional matching,
k-packing,

edge coloring,

Steiner cycle (aka K-cycle),
rural postman,

graph motif and related problems,
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Open problems

@ Improve over O(1.66") for Hamiltonian cycle in undirected graphs
e Get O(1.99") for Hamiltonian cycle in directed graphs.

o Faster deteministic algorithms for LONGEST PATH (Best known:
2.86Kn%1) | Fomin, Lokshtanov, Saurabh 2013)
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Exercises

o (Ex 10.16, &) Show an algorithm running in time 2%(nk)°() and
polynomial space for finding a colorful k-path in a vertex colored
graph.

o (Ex 10.17) Extend the 2¥(nk)°() algorithm for k-path to weighted
case for weight function w : E — [W]. Your algorithm should run in
time 2K W (nk)O().

o (Ex 10.18) Show a 23¥(nk)©(") algorithm which determines if a given
graph contains k vertex disjoint triangles.
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