
Algebraic techniques in parameterized algorithms,
Part II: Polynomials over finite fields of characteristic two

 Lukasz Kowalik

University of Warsaw

FPT School, Bedlewo, August 2014

 Lukasz Kowalik (UW) Algebraic techniques II August 2014 1 / 46

Field

Field is a triple (F ,+, ·), where

F is a set, + and · are binary operations

associativity: (a + b) + c = a + (b + c), (a · b) · c = a · (b · c)

commutativity: a + b = b + a, a · b = b · a
distributivity: a · (b + c) = a · b + a · c .

additive identity: ∃ 0 ∈ F s.t. 0 + a = a.

multiplicative identity: ∃ 1 ∈ F s.t. ∀a ∈ F \ {0} : 1 · a = a.

additive inverses: ∀ a ∈ F ∃b ∈ F s.t. a + b = 0;

multiplicative inverses: ∀ a ∈ F \ {0} ∃ b ∈ F s.t. a · b = 1;

Some familiar (infinite) fields: Q, R, C.
 Lukasz Kowalik (UW) Algebraic techniques II August 2014 2 / 46

Finite fields of characteristic 2

In what follows, we use finite fields of size |F | = 2`.
We need to know just three things about such fields:

They exist (for every ` ∈ N),

We can perform arithmetic operations fast, in O(log |F |(log log |F |)2)
time,

They are of characteristic two, i.e. 1 + 1 = 0.
In particular, for any element a, we have

a + a = a · (1 + 1) = a · 0 = 0

 Lukasz Kowalik (UW) Algebraic techniques II August 2014 3 / 46

Multivariate polynomials

Fix a field F .

Monomial

Monomial is an expression of the form m = axc1
1 xc2

2 · · · xcnn , where

a ∈ F

x1, . . . , xn are variables

c1, . . . , cn ∈ N ∪ {0}.
Degree of m is

∑n
i=1 ci .

Examples:

5x3
2x

7
3 (degree 10),

x1x2x3 · · · x2014 (degree 2014),

 Lukasz Kowalik (UW) Algebraic techniques II August 2014 4 / 46

Multivariate polynomials

Polynomial

A polynomial is a finite sum of monomials.

Polynomial (more precisely)

A polynomial an expression of the form

p =
∑

(c1,...,cn)∈(N∪{0})n
ac1,...,cnx

c1
1 xc2

2 · · · x
cn
n , (1)

where the coefficients ac1,...,cn are non-zero only for a finite number of
tuples (c1, . . . , cn).

Degree of p is the maximum degree of its monomials.

 Lukasz Kowalik (UW) Algebraic techniques II August 2014 5 / 46

Multivariate polynomials

Polynomial

A polynomial is a finite sum of monomials.

Polynomial (more precisely)

A polynomial an expression of the form

p =
∑

(c1,...,cn)∈(N∪{0})n
ac1,...,cnx

c1
1 xc2

2 · · · x
cn
n , (1)

where the coefficients ac1,...,cn are non-zero only for a finite number of
tuples (c1, . . . , cn).

Degree of p is the maximum degree of its monomials.

 Lukasz Kowalik (UW) Algebraic techniques II August 2014 5 / 46

Multivariate polynomials

Examples:

x1 + x2 (degree 1),

x3
1x2 + 5x3

2x
7
3 − x1x

5
2x3 (degree 10),

x1x2x3 · · · x2014 (degree 2014),

0 (the zero polynomial).

 Lukasz Kowalik (UW) Algebraic techniques II August 2014 6 / 46

The Schwartz-Zippel Lemma

Lemma [DeMillo and Lipton 1978, Zippel 1979, Schwartz 1980]

Let p(x1, x2, . . . , xn) be a non-zero polynomial of degree at most d over a
field F and let S be a finite subset of F . Sample values a1, a2, . . . , an from
S uniformly at random. Then,

Pr [p(a1, a2, . . . , an)] = 0] ≤ d/|S |.

A typical application

We can efficiently evaluate a polynomial p of degree d .

We want to test whether p is a non-zero polynomial.

Then, we pick S so that |S | ≥ 2d and we evaluate p on a random
vector x ∈ Sn. We answer YES iff we got p(x) 6= 0.

If p is the zero polynomial we always get NO, otherwise we get YES
with probability at least 1

2 .

This is called a Monte-Carlo algorithm with one-sided error.

 Lukasz Kowalik (UW) Algebraic techniques II August 2014 7 / 46

The Schwartz-Zippel Lemma

Lemma [DeMillo and Lipton 1978, Zippel 1979, Schwartz 1980]

Let p(x1, x2, . . . , xn) be a non-zero polynomial of degree at most d over a
field F and let S be a finite subset of F . Sample values a1, a2, . . . , an from
S uniformly at random. Then,

Pr [p(a1, a2, . . . , an)] = 0] ≤ d/|S |.

A typical application

We can efficiently evaluate a polynomial p of degree d .

We want to test whether p is a non-zero polynomial.

Then, we pick S so that |S | ≥ 2d and we evaluate p on a random
vector x ∈ Sn. We answer YES iff we got p(x) 6= 0.

If p is the zero polynomial we always get NO, otherwise we get YES
with probability at least 1

2 .

This is called a Monte-Carlo algorithm with one-sided error.

 Lukasz Kowalik (UW) Algebraic techniques II August 2014 7 / 46

Schwartz-Zippel Lemma: Take-home message

Message

We can test whether a polynomial P is non-zero by a single evaluation of
P in a random vector.

 Lukasz Kowalik (UW) Algebraic techniques II August 2014 8 / 46

The Schwartz-Zippel Lemma: Example

Polynomial equality testing

Input: Two multivariate polynomials P,Q given as an arithmetic circuit.
Question: Does P ≡ Q?

Note: A polynomial described by an arithmetic circuit of size s can have
2Ω(s) different monomials: (x1 + x2)(x1 − x3)(x2 + x4) · · · .

Solution

Test whether the polynomial P − Q is non-zero using the Schwartz-Zippel
Lemma.

Theorem

Polynomial equality testing for two polynomials represented by circuits of
size at most s can be solved in O(s) time with a Monte Carlo algorithm
with one-sided error probability bounded by 1/2.

 Lukasz Kowalik (UW) Algebraic techniques II August 2014 9 / 46

The Schwartz-Zippel Lemma: Example

Polynomial equality testing

Input: Two multivariate polynomials P,Q given as an arithmetic circuit.
Question: Does P ≡ Q?

Note: A polynomial described by an arithmetic circuit of size s can have
2Ω(s) different monomials: (x1 + x2)(x1 − x3)(x2 + x4) · · · .

Solution

Test whether the polynomial P − Q is non-zero using the Schwartz-Zippel
Lemma.

Theorem

Polynomial equality testing for two polynomials represented by circuits of
size at most s can be solved in O(s) time with a Monte Carlo algorithm
with one-sided error probability bounded by 1/2.

 Lukasz Kowalik (UW) Algebraic techniques II August 2014 9 / 46

Longest Path problem

Problem

Input: directed/undirected graph G , integer k .
Question: Does G contain a k-vertex path (shortly: k-path)?

Progress

Monien 1985: O(k!nO(1))

Alon, Yuster, Zwick 1994: O((2e)knO(1)) (color coding → Tuesday)

Kneis et al. 2006, Chen et al. 2007: O(4knO(1))
(divide-and-color → book)

Koutis 2008: O(23/2knO(1)) (group algebras → Friday)

Williams 2009: O(2knO(1)) (group algebras → Friday)

 Lukasz Kowalik (UW) Algebraic techniques II August 2014 10 / 46

Longest Path problem

Problem

Input: directed/undirected graph G , integer k .
Question: Does G contain a k-vertex path (shortly: k-path)?

Progress

Monien 1985: O(k!nO(1))

Alon, Yuster, Zwick 1994: O((2e)knO(1)) (color coding → Tuesday)

Kneis et al. 2006, Chen et al. 2007: O(4knO(1))
(divide-and-color → book)

Koutis 2008: O(23/2knO(1)) (group algebras → Friday)

Williams 2009: O(2knO(1)) (group algebras → Friday)

 Lukasz Kowalik (UW) Algebraic techniques II August 2014 10 / 46

Longest Path problem

Problem

Input: directed/undirected graph G , integer k .
Question: Does G contain a k-vertex path (shortly: k-path)?

Progress

Monien 1985: O(k!nO(1))

Alon, Yuster, Zwick 1994: O((2e)knO(1)) (color coding → Tuesday)

Kneis et al. 2006, Chen et al. 2007: O(4knO(1))
(divide-and-color → book)

Koutis 2008: O(23/2knO(1)) (group algebras → Friday)

Williams 2009: O(2knO(1)) (group algebras → Friday)

 Lukasz Kowalik (UW) Algebraic techniques II August 2014 10 / 46

Longest Path problem

Problem

Input: directed/undirected graph G , integer k .
Question: Does G contain a k-vertex path (shortly: k-path)?

Progress

Monien 1985: O(k!nO(1))

Alon, Yuster, Zwick 1994: O((2e)knO(1)) (color coding → Tuesday)

Kneis et al. 2006, Chen et al. 2007: O(4knO(1))
(divide-and-color → book)

Koutis 2008: O(23/2knO(1)) (group algebras → Friday)

Williams 2009: O(2knO(1)) (group algebras → Friday)

 Lukasz Kowalik (UW) Algebraic techniques II August 2014 10 / 46

Longest Path problem

Problem

Input: directed/undirected graph G , integer k .
Question: Does G contain a k-vertex path (shortly: k-path)?

Progress

Monien 1985: O(k!nO(1))

Alon, Yuster, Zwick 1994: O((2e)knO(1)) (color coding → Tuesday)

Kneis et al. 2006, Chen et al. 2007: O(4knO(1))
(divide-and-color → book)

Koutis 2008: O(23/2knO(1)) (group algebras → Friday)

Williams 2009: O(2knO(1)) (group algebras → Friday)

 Lukasz Kowalik (UW) Algebraic techniques II August 2014 10 / 46

Longest Path problem

Problem

Input: directed/undirected graph G , integer k .
Question: Does G contain a k-vertex path (shortly: k-path)?

Progress

Monien 1985: O(k!nO(1))

Alon, Yuster, Zwick 1994: O((2e)knO(1)) (color coding → Tuesday)

Kneis et al. 2006, Chen et al. 2007: O(4knO(1))
(divide-and-color → book)

Koutis 2008: O(23/2knO(1)) (group algebras → Friday)

Williams 2009: O(2knO(1)) (group algebras → Friday)

 Lukasz Kowalik (UW) Algebraic techniques II August 2014 10 / 46

Longest Path problem

Problem

Input: directed/undirected graph G , integer k .
Question: Does G contain a k-vertex path (shortly: k-path)?

Progress

Monien 1985: O(k!nO(1))

Alon, Yuster, Zwick 1994: O((2e)knO(1)) (color coding → Tuesday)

Kneis et al. 2006, Chen et al. 2007: O(4knO(1))
(divide-and-color → book)

Koutis 2008: O(23/2knO(1)) (group algebras → Friday)

Williams 2009: O(2knO(1)) (group algebras → Friday)

Björklund 2010: O(1.66nnO(1)), undirected Hamiltonian cycle (k = n)
(polynomials over finite fields of characteristic two)

Björklund, Husfeldt, Kaski, Koivisto 2010: O(1.66knO(1)), undirected

 Lukasz Kowalik (UW) Algebraic techniques II August 2014 10 / 46

Longest Path problem

Problem

Input: directed/undirected graph G , integer k .
Question: Does G contain a k-vertex path (shortly: k-path)?

Progress

Monien 1985: O(k!nO(1))

Alon, Yuster, Zwick 1994: O((2e)knO(1)) (color coding → Tuesday)

Kneis et al. 2006, Chen et al. 2007: O(4knO(1))
(divide-and-color → book)

Koutis 2008: O(23/2knO(1)) (group algebras → Friday)

Williams 2009: O(2knO(1)) (group algebras → Friday)

Björklund 2010: O(1.66nnO(1)), undirected Hamiltonian cycle (k = n)
(polynomials over finite fields of characteristic two)

Björklund, Husfeldt, Kaski, Koivisto 2010: O(1.66knO(1)), undirected

 Lukasz Kowalik (UW) Algebraic techniques II August 2014 10 / 46

Longest Path in time O(2kk|E |)

 Lukasz Kowalik (UW) Algebraic techniques II August 2014 11 / 46

Notation

[k] = {1, . . . , k}

 Lukasz Kowalik (UW) Algebraic techniques II August 2014 12 / 46

2k(kn)O(1)-time algorithm for Longest Path

Rough idea

Want to construct a polynomial P, P 6≡ 0 iff G has a k-path.

First try: P(· · ·) =
∑

k-path R in G

monomial(R).

Seems good, but how to evaluate it?

Second try: P(· · ·) =
∑

k-walk W in G

monomial(W).

Now we can evaluate it but we may get false positives.

Final try: P(· · ·) =
∑

k-walk W in G

∑
`:[k]→[k]

` is bijective

monomial(w , `).

We still can evaluate it,
It turns out that every monomial corresponding to a walk which is not
a path appears an even number of times so it cancels-out!

 Lukasz Kowalik (UW) Algebraic techniques II August 2014 13 / 46

2k(kn)O(1)-time algorithm for Longest Path

Rough idea

Want to construct a polynomial P, P 6≡ 0 iff G has a k-path.

First try: P(· · ·) =
∑

k-path R in G

monomial(R).

Seems good, but how to evaluate it?

Second try: P(· · ·) =
∑

k-walk W in G

monomial(W).

Now we can evaluate it but we may get false positives.

Final try: P(· · ·) =
∑

k-walk W in G

∑
`:[k]→[k]

` is bijective

monomial(w , `).

We still can evaluate it,
It turns out that every monomial corresponding to a walk which is not
a path appears an even number of times so it cancels-out!

 Lukasz Kowalik (UW) Algebraic techniques II August 2014 13 / 46

2k(kn)O(1)-time algorithm for Longest Path

Rough idea

Want to construct a polynomial P, P 6≡ 0 iff G has a k-path.

First try: P(· · ·) =
∑

k-path R in G

monomial(R).

Seems good, but how to evaluate it?

Second try: P(· · ·) =
∑

k-walk W in G

monomial(W).

Now we can evaluate it but we may get false positives.

Final try: P(· · ·) =
∑

k-walk W in G

∑
`:[k]→[k]

` is bijective

monomial(w , `).

We still can evaluate it,
It turns out that every monomial corresponding to a walk which is not
a path appears an even number of times so it cancels-out!

 Lukasz Kowalik (UW) Algebraic techniques II August 2014 13 / 46

2k(kn)O(1)-time algorithm for Longest Path

Rough idea

Want to construct a polynomial P, P 6≡ 0 iff G has a k-path.

First try: P(· · ·) =
∑

k-path R in G

monomial(R).

Seems good, but how to evaluate it?

Second try: P(· · ·) =
∑

k-walk W in G

monomial(W).

Now we can evaluate it but we may get false positives.

Final try: P(· · ·) =
∑

k-walk W in G

∑
`:[k]→[k]

` is bijective

monomial(w , `).

We still can evaluate it,
It turns out that every monomial corresponding to a walk which is not
a path appears an even number of times so it cancels-out!

 Lukasz Kowalik (UW) Algebraic techniques II August 2014 13 / 46

Our Hero

P(x, y) =
∑

walk W = v1, . . . , vk

∑
`:[k]→[k]

` is bijective

k−1∏
i=1

xvi ,vi+1

k∏
i=1

yvi ,`(i)︸ ︷︷ ︸
monW ,`

Variables:

a variable xe for every e ∈ E ,

a variable yv ,` for every v ∈ V and ` ∈ [k].

 Lukasz Kowalik (UW) Algebraic techniques II August 2014 14 / 46

Monomials corresponding to non-path walks cancel-out

Let W = v1, . . . , vk be a walk, and a bijection ` : [k]→ [k].

Assume va = vb for some a < b, if many such pairs take the
lexicographically first pair (a, b).

We define `′ : [k]→ [k] as follows:

`′(x) =


`(b) if x = a,

`(a) if x = b,

`(x) otherwise.

(W , `) 6= (W , `′) since ` is injective.

If we start from (W , `′) and follow the same way of assignment we
get (W , `) back. (This is called a fixed-point free involution)

Since the field is of characteristic 2, monW ,` and monW ,`′ cancel out!

 Lukasz Kowalik (UW) Algebraic techniques II August 2014 15 / 46

Monomials corresponding to non-path walks cancel-out

Let W = v1, . . . , vk be a walk, and a bijection ` : [k]→ [k].

Assume va = vb for some a < b, if many such pairs take the
lexicographically first pair (a, b).

We define `′ : [k]→ [k] as follows:

`′(x) =


`(b) if x = a,

`(a) if x = b,

`(x) otherwise.

(W , `) 6= (W , `′) since ` is injective.

If we start from (W , `′) and follow the same way of assignment we
get (W , `) back. (This is called a fixed-point free involution)

Since the field is of characteristic 2, monW ,` and monW ,`′ cancel out!

 Lukasz Kowalik (UW) Algebraic techniques II August 2014 15 / 46

Monomials corresponding to non-path walks cancel-out

Let W = v1, . . . , vk be a walk, and a bijection ` : [k]→ [k].

Assume va = vb for some a < b, if many such pairs take the
lexicographically first pair (a, b).

We define `′ : [k]→ [k] as follows:

`′(x) =


`(b) if x = a,

`(a) if x = b,

`(x) otherwise.

(W , `) 6= (W , `′) since ` is injective.

If we start from (W , `′) and follow the same way of assignment we
get (W , `) back. (This is called a fixed-point free involution)

Since the field is of characteristic 2, monW ,` and monW ,`′ cancel out!

 Lukasz Kowalik (UW) Algebraic techniques II August 2014 15 / 46

Monomials corresponding to non-path walks cancel-out

Let W = v1, . . . , vk be a walk, and a bijection ` : [k]→ [k].

Assume va = vb for some a < b, if many such pairs take the
lexicographically first pair (a, b).

We define `′ : [k]→ [k] as follows:

`′(x) =


`(b) if x = a,

`(a) if x = b,

`(x) otherwise.

(W , `) 6= (W , `′) since ` is injective.

If we start from (W , `′) and follow the same way of assignment we
get (W , `) back. (This is called a fixed-point free involution)

Since the field is of characteristic 2, monW ,` and monW ,`′ cancel out!

 Lukasz Kowalik (UW) Algebraic techniques II August 2014 15 / 46

Monomials corresponding to non-path walks cancel-out

Let W = v1, . . . , vk be a walk, and a bijection ` : [k]→ [k].
Assume va = vb for some a < b, if many such pairs take the
lexicographically first pair (a, b).
We define `′ : [k]→ [k] as follows:

`′(x) =


`(b) if x = a,

`(a) if x = b,

`(x) otherwise.

(W , `) 6= (W , `′) since ` is injective.

monW ,` =
k−1∏
i=1

xvi ,vi+1

k∏
i=1

yvi ,`(i) =

k−1∏
i=1

xvi ,vi+1

∏
i∈[k]\{a,b}

yvi ,`(i) yva,`(a)︸ ︷︷ ︸
yvb`′(b)

yvb,`(b)︸ ︷︷ ︸
yva`′(a)

= monW ,`′

If we start from (W , `′) and follow the same way of assignment we
get (W , `) back. (This is called a fixed-point free involution)
Since the field is of characteristic 2, monW ,` and monW ,`′ cancel out!

 Lukasz Kowalik (UW) Algebraic techniques II August 2014 15 / 46

Monomials corresponding to non-path walks cancel-out

Let W = v1, . . . , vk be a walk, and a bijection ` : [k]→ [k].

Assume va = vb for some a < b, if many such pairs take the
lexicographically first pair (a, b).

We define `′ : [k]→ [k] as follows:

`′(x) =


`(b) if x = a,

`(a) if x = b,

`(x) otherwise.

(W , `) 6= (W , `′) since ` is injective.

monW ,` = monW ,`′

If we start from (W , `′) and follow the same way of assignment we
get (W , `) back. (This is called a fixed-point free involution)

Since the field is of characteristic 2, monW ,` and monW ,`′ cancel out!

 Lukasz Kowalik (UW) Algebraic techniques II August 2014 15 / 46

Monomials corresponding to non-path walks cancel-out

Let W = v1, . . . , vk be a walk, and a bijection ` : [k]→ [k].

Assume va = vb for some a < b, if many such pairs take the
lexicographically first pair (a, b).

We define `′ : [k]→ [k] as follows:

`′(x) =


`(b) if x = a,

`(a) if x = b,

`(x) otherwise.

(W , `) 6= (W , `′) since ` is injective.

monW ,` = monW ,`′

If we start from (W , `′) and follow the same way of assignment we
get (W , `) back. (This is called a fixed-point free involution)

Since the field is of characteristic 2, monW ,` and monW ,`′ cancel out!

 Lukasz Kowalik (UW) Algebraic techniques II August 2014 15 / 46

Monomials corresponding to non-path walks cancel-out

Let W = v1, . . . , vk be a walk, and a bijection ` : [k]→ [k].

Assume va = vb for some a < b, if many such pairs take the
lexicographically first pair (a, b).

We define `′ : [k]→ [k] as follows:

`′(x) =


`(b) if x = a,

`(a) if x = b,

`(x) otherwise.

(W , `) 6= (W , `′) since ` is injective.

monW ,` = monW ,`′

If we start from (W , `′) and follow the same way of assignment we
get (W , `) back. (This is called a fixed-point free involution)

Since the field is of characteristic 2, monW ,` and monW ,`′ cancel out!

 Lukasz Kowalik (UW) Algebraic techniques II August 2014 15 / 46

Half the way...

Corollary

If P 6≡ 0 then there is a k-path.

 Lukasz Kowalik (UW) Algebraic techniques II August 2014 16 / 46

The second half

Recall:

P(x, y) =
∑

walk W = v1, . . . , vk

∑
`:[k]→[k]

` is bijective

k−1∏
i=1

xvi ,vi+1

k∏
i=1

yvi ,`(i)︸ ︷︷ ︸
monW ,`

Question

Why do we need exactly monW ,` =
∏k−1

i=1 xvi ,vi+1

∏k
i=1 yvi ,`(i)?

What if, say, monW ,` =
∏k

i=1 yvi ,`(i)?

Answer

Now, every labelled walk which is a path gets a unique monomial.

Corollary

If there is a k-path in G then P 6≡ 0.

 Lukasz Kowalik (UW) Algebraic techniques II August 2014 17 / 46

The second half

Recall:

P(x, y) =
∑

walk W = v1, . . . , vk

∑
`:[k]→[k]

` is bijective

k−1∏
i=1

xvi ,vi+1

k∏
i=1

yvi ,`(i)︸ ︷︷ ︸
monW ,`

Question

Why do we need exactly monW ,` =
∏k−1

i=1 xvi ,vi+1

∏k
i=1 yvi ,`(i)?

What if, say, monW ,` =
∏k

i=1 yvi ,`(i)?

Answer

Now, every labelled walk which is a path gets a unique monomial.

Corollary

If there is a k-path in G then P 6≡ 0.

 Lukasz Kowalik (UW) Algebraic techniques II August 2014 17 / 46

The second half

Recall:

P(x, y) =
∑

walk W = v1, . . . , vk

∑
`:[k]→[k]

` is bijective

k−1∏
i=1

xvi ,vi+1

k∏
i=1

yvi ,`(i)︸ ︷︷ ︸
monW ,`

Question

Why do we need exactly monW ,` =
∏k−1

i=1 xvi ,vi+1

∏k
i=1 yvi ,`(i)?

What if, say, monW ,` =
∏k

i=1 yvi ,`(i)?

Answer

Now, every labelled walk which is a path gets a unique monomial.

Corollary

If there is a k-path in G then P 6≡ 0.

 Lukasz Kowalik (UW) Algebraic techniques II August 2014 17 / 46

Where are we?

Corollary

There is a k-path in G iff P 6≡ 0.

The missing element

How to evaluate P efficiently?
(2k(kn)O(1) is efficiently enough.)

 Lukasz Kowalik (UW) Algebraic techniques II August 2014 18 / 46

Weighted inclusion-exclusion

Let A1, . . . ,An ⊆ U, where U is a finite set.
Let w : U → F be a weight function.
For any X ⊆ U denote w(X) =

∑
x∈X w(x).

Let us also denote
⋂

i∈∅(U − Ai) = U.

Then,

w

⋂
i∈[n]

Ai

 =
∑
X⊆[n]

(−1)|X |w

(⋂
i∈X

(U − Ai)

)
.

Counting over a field of characteristic 2 we know that −1 = 1 so we can
remove the (−1)|X |:

w

⋂
i∈[n]

Ai

 =
∑
X⊆[n]

w

(⋂
i∈X

(U − Ai)

)
.

 Lukasz Kowalik (UW) Algebraic techniques II August 2014 19 / 46

Weighted inclusion-exclusion

Let A1, . . . ,An ⊆ U, where U is a finite set.
Let w : U → F be a weight function.
For any X ⊆ U denote w(X) =

∑
x∈X w(x).

Let us also denote
⋂

i∈∅(U − Ai) = U.

Then,

w

⋂
i∈[n]

Ai

 =
∑
X⊆[n]

(−1)|X |w

(⋂
i∈X

(U − Ai)

)
.

Counting over a field of characteristic 2 we know that −1 = 1 so we can
remove the (−1)|X |:

w

⋂
i∈[n]

Ai

 =
∑
X⊆[n]

w

(⋂
i∈X

(U − Ai)

)
.

 Lukasz Kowalik (UW) Algebraic techniques II August 2014 19 / 46

Evaluating P(x, y) =
∑

walk W

∑
`:[k]→[k]

` is bijective

monW ,`(x, y)

Fix a walk W .

U = {` : [k]→ [k]} (all functions)
for ` ∈ U, define the weight w(`) = monW ,`(x, y).
for i = 1, . . . , k let Ai = {` ∈ U : `−1(i) 6= ∅}.
Then,∑

`:[k]→[k]
` is bijective

monW ,`(x, y) =
∑

`:[k]→[k]
` is surjective

monW ,`(x, y) =
∑

`∈
⋂k

i=1 Ai

monW ,`(x, y) = w(
k⋂

i=1

Ai).

By weighted I-E,∑
`:[k]→[k]

` is surjective

monW ,`(x, y) =
∑
X⊆[k]

w

(⋂
i∈X

(U − Ai)

)
=

∑
X⊆[k]

∑
`:[k]→[k]\X

monW ,`(x, y)

 Lukasz Kowalik (UW) Algebraic techniques II August 2014 20 / 46

Evaluating P(x, y) =
∑

walk W

∑
`:[k]→[k]

` is bijective

monW ,`(x, y)

Fix a walk W .

U = {` : [k]→ [k]} (all functions)
for ` ∈ U, define the weight w(`) = monW ,`(x, y).
for i = 1, . . . , k let Ai = {` ∈ U : `−1(i) 6= ∅}.
Then,∑

`:[k]→[k]
` is bijective

monW ,`(x, y) =
∑

`:[k]→[k]
` is surjective

monW ,`(x, y) =
∑

`∈
⋂k

i=1 Ai

monW ,`(x, y) = w(
k⋂

i=1

Ai).

By weighted I-E,∑
`:[k]→[k]

` is surjective

monW ,`(x, y) =
∑
X⊆[k]

w

(⋂
i∈X

(U − Ai)

)
=

∑
X⊆[k]

∑
`:[k]→X

monW ,`(x, y)

 Lukasz Kowalik (UW) Algebraic techniques II August 2014 20 / 46

Evaluating P(x, y) =
∑

walk W

∑
`:[k]→[k]

` is bijective

monW ,`(x, y)

We got ∑
`:[k]→[k]

` is bijective

monW ,`(x, y) =
∑
X⊆[k]

∑
`:[k]→X

monW ,`(x, y)

Hence,

P(x, y) =
∑

walk W

∑
X⊆[k]

∑
`:[k]→X

monW ,`(x, y)

=
∑
X⊆[k]

∑
walk W

∑
`:[k]→X

monW ,`(x, y)

︸ ︷︷ ︸
PX (x,y)

 Lukasz Kowalik (UW) Algebraic techniques II August 2014 21 / 46

Evaluating PX (x, y) =
∑

walk W
of length k

∑
`:[k]→X

monW ,`(x, y) in nO(1)

We use dynamic programming. (How?)

Fill the 2-dimensional table T ,

T [v , d] =
∑

walk W = v1, . . . , vd
v1 = v

∑
`:[k]→X

d−1∏
i=1

xvi ,vi+1

d∏
i=1

yvi ,`(i)

Then,

T [v , d] =


∑
l∈X

yvl when d = 1,∑
l∈X

yvl
∑

(v ,w)∈E

xvw · T [w , d − 1] otherwise.

Hence, PX (x, y) =
∑
s∈V

T [s, k] can be computed in O(k|E |) time.

 Lukasz Kowalik (UW) Algebraic techniques II August 2014 22 / 46

Evaluating PX (x, y) =
∑

walk W
of length k

∑
`:[k]→X

monW ,`(x, y) in nO(1)

We use dynamic programming. (How?)
Fill the 2-dimensional table T ,

T [v , d] =
∑

walk W = v1, . . . , vd
v1 = v

∑
`:[k]→X

d−1∏
i=1

xvi ,vi+1

d∏
i=1

yvi ,`(i)

Then,

T [v , d] =


∑
l∈X

yvl when d = 1,∑
l∈X

yvl
∑

(v ,w)∈E

xvw · T [w , d − 1] otherwise.

Hence, PX (x, y) =
∑
s∈V

T [s, k] can be computed in O(k|E |) time.

 Lukasz Kowalik (UW) Algebraic techniques II August 2014 22 / 46

Cost of arithmetic

P(x, y) =
∑

walk W = v1, . . . , vk

∑
`:[k]→[k]

` is bijective

k−1∏
i=1

xvi ,vi+1

k∏
i=1

yvi ,`(i)︸ ︷︷ ︸
monW ,`

Degree of P is 2k − 1.

Pick a field F of size 2dlog(4k)e > 4k.

Sample values of variables from set S = F .

By Schwartz-Zippel Lemma, false-negatives with probability at most
(2k − 1)/(4k) ≤ 1/2

Arithmetic in O(log k(log log k)2) time (cheap!).

 Lukasz Kowalik (UW) Algebraic techniques II August 2014 23 / 46

Conclusion

Corollary

Longest Path can be solved by a O(2kk log k(log log k)2|E |)-time
polynomial space one-sided error Monte-Carlo algorithm.

Finding k-paths in a 1000-vertex graph on a 2.53-GHz Intel Xeon CPU:

7 9 11 13 15 17
k (path size)

10-2

10-1

100

101

R
u
n
n
in

g
 t

im
e
 [

s]

0.01s

0.03s

0.1s

0.3s

1s

3s

10s

1min

 Lukasz Kowalik (UW) Algebraic techniques II August 2014 24 / 46

Conclusion

Corollary

Longest Path can be solved by a O(2kk log k(log log k)2|E |)-time
polynomial space one-sided error Monte-Carlo algorithm.

Finding k-paths in a 1000-vertex graph on a 2.53-GHz Intel Xeon CPU:

7 9 11 13 15 17
k (path size)

10-2

10-1

100

101

R
u
n
n
in

g
 t

im
e
 [

s]

0.01s

0.03s

0.1s

0.3s

1s

3s

10s

1min

 Lukasz Kowalik (UW) Algebraic techniques II August 2014 24 / 46

Longest Path in undirected
bipartite graphs in 2k/2(kn)O(1)

time

 Lukasz Kowalik (UW) Algebraic techniques II August 2014 25 / 46

Longest Path in undirected bipartite graphs in

2k/2(kn)O(1) time

V1

V2

 Lukasz Kowalik (UW) Algebraic techniques II August 2014 26 / 46

A new hero

Idea

Label vertices of V1 only.

P(x, y) =
∑

walk W = v1, . . . , vk

∑
`:[k/2]→[k/2]
` is bijective

k−1∏
i=1

xvi ,vi+1

k/2∏
i=1

yv2i−1,`(i)︸ ︷︷ ︸
monW ,`

Variables:

a variable xe for every e ∈ E (xuv = xvu),

a variable yv ,` for every v ∈ V1 and ` ∈ [k/2].

 Lukasz Kowalik (UW) Algebraic techniques II August 2014 27 / 46

Checking the hero

P(x, y) =
∑

walk W = v1, . . . , vk

∑
`:[k/2]→[k/2]
` is bijective

k−1∏
i=1

xvi ,vi+1

k/2∏
i=1

yv2i−1,`(i)︸ ︷︷ ︸
monW ,`

Paths do not cancel-out

If there is a k-path with an endpoint in V1 then P 6≡ 0.
(Proof: We can recover (W , `) from monW ,` as before.)

 Lukasz Kowalik (UW) Algebraic techniques II August 2014 28 / 46

Checking the hero

P(x, y) =
∑

walk W = v1, . . . , vk

∑
`:[k/2]→[k/2]
` is bijective

k−1∏
i=1

xvi ,vi+1

k/2∏
i=1

yv2i−1,`(i)︸ ︷︷ ︸
monW ,`

Do non-path walks cancel-out?

Consider a non-path labelled walk (W , `), W = v1, . . . , vk .
Case 1 If exist i , j , i < j s.t. vi = vj , vi ∈ V1:

pick lexicographically first such pair;
both vi and vj have labels so we swap labels as before.

Case 2 As in Case 1, but vi ∈ V2 and Case 1 does not occur:
reverse the cycle:

W

vi = vj

W ′

vi = vj

`1`2 `1`2 monW ,` = monW ′,`′ ,

from (W ′, `′) we get (W , `),

Does (W , `) 6= (W ′, `′) ?

 Lukasz Kowalik (UW) Algebraic techniques II August 2014 29 / 46

Checking the hero

P(x, y) =
∑

walk W = v1, . . . , vk

∑
`:[k/2]→[k/2]
` is bijective

k−1∏
i=1

xvi ,vi+1

k/2∏
i=1

yv2i−1,`(i)︸ ︷︷ ︸
monW ,`

Do non-path walks cancel-out?

Consider a non-path labelled walk (W , `), W = v1, . . . , vk .
Case 1 If exist i , j , i < j s.t. vi = vj , vi ∈ V1:

pick lexicographically first such pair;
both vi and vj have labels so we swap labels as before.

Case 2 As in Case 1, but vi ∈ V2 and Case 1 does not occur:
reverse the cycle:

W

vi = vj

W ′

vi = vj

monW ,` = monW ′,`′ ,

from (W ′, `′) we get (W , `),

Does (W , `) 6= (W ′, `′) ? NO!

 Lukasz Kowalik (UW) Algebraic techniques II August 2014 30 / 46

Fixing the hero

Admissible walks

Walk v1, . . . , vk is admissible if:
For every i = 1, . . . , k − 2, if vi ∈ V2 and vi+1 ∈ V1 then vi+2 6= vi .

P(x, y) =
∑

walk W = v1, . . . , vk
W is admissible

∑
`:[k/2]→[k/2]
` is bijective

k−1∏
i=1

xvi ,vi+1

k/2∏
i=1

yv2i−1,`(i)︸ ︷︷ ︸
monW ,`

 Lukasz Kowalik (UW) Algebraic techniques II August 2014 31 / 46

Checking the fixed hero

P(x, y) =
∑

walk W = v1, . . . , vk
W is admissible

∑
`:[k/2]→[k/2]
` is bijective

k−1∏
i=1

xvi ,vi+1

k/2∏
i=1

yv2i−1,`(i)︸ ︷︷ ︸
monW ,`

Do non-path walks cancel-out?

Consider a non-path labelled walk (W , `), W = v1, . . . , vk .
Case 1 If exist i , j , i < j s.t. vi = vj , vi ∈ V1:

pick lexicographically first such pair;
both vi and vj have labels so we swap labels as before.

Case 2 As in Case 1, but vi ∈ V2 and Case 1 does not occur:
reverse the cycle:

W

vi = vj

W ′

vi = vj

`1`2 `1`2

monW ,` = monW ′,`′ ,

from (W ′, `′) we get (W , `),

(W , `) 6= (W ′, `′) because W
admissible,

W ′ is admissible.
 Lukasz Kowalik (UW) Algebraic techniques II August 2014 32 / 46

Evaluating P(x, y) =
∑

admissible walk W

∑
`:[k/2]→[k/2]
` is bijective

monW ,`(x, y)

As before, from inclusion-exclusion principle we can get∑
`:[k/2]→[k/2]
` is bijective

monW ,`(x, y) =
∑

X⊆[k/2]

∑
`:[k/2]→X

monW ,`(x, y)

Hence, as before:

P(x, y) =
∑

admissible walk W

∑
X⊆[k/2]

∑
`:[k/2]→X

monW ,`(x, y)

=
∑

X⊆[k/2]

∑
admissible walk W

∑
`:[k/2]→X

monW ,`(x, y)

︸ ︷︷ ︸
PX (x,y)

Note: Only 2k/2 polynomials PX to evaluate.
 Lukasz Kowalik (UW) Algebraic techniques II August 2014 33 / 46

Evaluating PX (x, y) =
∑

admissible
walk W

of length k

∑
`:[k/2]→X

monW ,` in poly-time

Dynamic programming:

T [v ,w , d] =
∑

admissible walk
W = v1, . . . , vd

v1 = v
v2 = w

∑
`:[k/2]→X

k−1∏
i=1

xvi ,vi+1

k/2∏
i=1

yv2i−1,`(i)

Then,

T [v ,w , d] =



xvw
∑

l∈X yvl when d = 2 and v ∈ V1,

xvw
∑

l∈X ywl when d = 2 and v ∈ V2,∑
l∈X

yvl
∑

(w ,u)∈E

xvw · T [w , u, d − 1] when d > 2 and v ∈ V1,∑
(w ,u)∈E
u 6=v

xvw · T [w , u, d − 1] when d > 2 and v ∈ V2.

 Lukasz Kowalik (UW) Algebraic techniques II August 2014 34 / 46

Conclusion

Theorem (Björklund, Husfeldt, Kaski, Koivisto 2010)

Longest Path in undirected bipartite graphs can be solved in
2k/2(kn)O(1) = 1.42k(kn)O(1) time and polynomial space.

 Lukasz Kowalik (UW) Algebraic techniques II August 2014 35 / 46

Conclusion

Theorem (Björklund, Husfeldt, Kaski, Koivisto 2010)

Longest Path in undirected bipartite graphs can be solved in
2k/2(kn)O(1) = 1.42k(kn)O(1) time and polynomial space.

 Lukasz Kowalik (UW) Algebraic techniques II August 2014 35 / 46

Longest Path in undirected
graphs in 2

3
4k(kn)O(1) time

 Lukasz Kowalik (UW) Algebraic techniques II August 2014 36 / 46

Longest Path in undirected graphs in 2
3
4k(kn)O(1) time

Choose a random bipartition V = V1 ∪ V2, ||V1| − |V2|| ≤ 1.
(V1 and V2 need not be independent now.)

Where does the bipartite case algorithm fail?

W

vi = vj

W ′

vi = vj

Then (W , `) = (W ′, `′).

What if we forbid also ?

Then we run into another trouble:

W W ′

W ′ contains the forbidden configuration.

 Lukasz Kowalik (UW) Algebraic techniques II August 2014 37 / 46

Longest Path in undirected graphs in 2
3
4k(kn)O(1) time

Choose a random bipartition V = V1 ∪ V2, ||V1| − |V2|| ≤ 1.
(V1 and V2 need not be independent now.)

Where does the bipartite case algorithm fail?

W

vi = vj

W ′

vi = vj

Then (W , `) = (W ′, `′).

What if we forbid also ?

Then we run into another trouble:

W W ′

W ′ contains the forbidden configuration.

 Lukasz Kowalik (UW) Algebraic techniques II August 2014 37 / 46

Longest Path in undirected graphs in 2
3
4k(kn)O(1) time

Choose a random bipartition V = V1 ∪ V2, ||V1| − |V2|| ≤ 1.
(V1 and V2 need not be independent now.)

Where does the bipartite case algorithm fail?

W

vi = vj

W ′

vi = vj

Then (W , `) = (W ′, `′).

What if we forbid also ?

Then we run into another trouble:

W W ′

W ′ contains the forbidden configuration.

 Lukasz Kowalik (UW) Algebraic techniques II August 2014 37 / 46

The solution

Forbidden configuration as before:

Add more labels:
label each V2V2-edge:

W

vi = vj vi = vj

W ′

`2 `1 `2 `1

Now `′ 6= `.

 Lukasz Kowalik (UW) Algebraic techniques II August 2014 38 / 46

How many labels do we need now?

a different label for each i = 1, . . . , k s.t. vi ∈ V1

a different label for each i = 1, . . . , k s.t. vi , vi+1 ∈ V2

 Lukasz Kowalik (UW) Algebraic techniques II August 2014 39 / 46

L-admissible walks

Walk W = v1, . . . , vk is L-admissible when

For every i = 1, . . . , k − 2, if vi ∈ V2 and vi+1 ∈ V1 then vi+2 6= vi .

|{i : vi ∈ V1}|+ |{i : vivi+1 ∈ V2}| = L

 Lukasz Kowalik (UW) Algebraic techniques II August 2014 40 / 46

The ultimate hero

PL(x, y) =
∑

walk W = v1, . . . , vk
W is L-admissible

∑
`:[L]→[L]

` is bijective

k−1∏
i=1

xvi ,vi+1

L∏
i=1

yf (i),`(i),

where f (i) = i-th labeled object (V1-vertex or V2V2-edge) in walk W .

f (1) f (2)

f (3)

f (5) f (4)

f (6)

P =

d 3
4
ke∑

L=k/2

PL

 Lukasz Kowalik (UW) Algebraic techniques II August 2014 41 / 46

Correctness

We have checked that:
P 6≡ 0 ⇒ exists k-path
(i.e. non-path walks cancel-out)

The opposite implication not always true! (why?)
it may happen that the only (say) solution P is not L-admissible for
all L ≤ d3

4ke.
But...

E[|{i : vi ∈ V1}|+ |{i : vivi+1 ∈ V2}|] = k
2 + k−1

4 = 3k−1
4

So, by Markov inequality

Pr [P is not L-admissible for all L ≤ d3
4ke] ≤

(3k − 1)/4

d3
4ke+ 1

= 1−1/O(k)

If we repeat the algorithm k log n times this probability drops to

(1− 1/O(k))k log n = (e−1/O(k))k log n = e−O(log n) = 1/nΩ(1)

 Lukasz Kowalik (UW) Algebraic techniques II August 2014 42 / 46

Correctness

We have checked that:
P 6≡ 0 ⇒ exists k-path
(i.e. non-path walks cancel-out)

The opposite implication not always true! (why?)

it may happen that the only (say) solution P is not L-admissible for
all L ≤ d3

4ke.
But...

E[|{i : vi ∈ V1}|+ |{i : vivi+1 ∈ V2}|] = k
2 + k−1

4 = 3k−1
4

So, by Markov inequality

Pr [P is not L-admissible for all L ≤ d3
4ke] ≤

(3k − 1)/4

d3
4ke+ 1

= 1−1/O(k)

If we repeat the algorithm k log n times this probability drops to

(1− 1/O(k))k log n = (e−1/O(k))k log n = e−O(log n) = 1/nΩ(1)

 Lukasz Kowalik (UW) Algebraic techniques II August 2014 42 / 46

Correctness

We have checked that:
P 6≡ 0 ⇒ exists k-path
(i.e. non-path walks cancel-out)

The opposite implication not always true! (why?)
it may happen that the only (say) solution P is not L-admissible for
all L ≤ d3

4ke.

But...
E[|{i : vi ∈ V1}|+ |{i : vivi+1 ∈ V2}|] = k

2 + k−1
4 = 3k−1

4

So, by Markov inequality

Pr [P is not L-admissible for all L ≤ d3
4ke] ≤

(3k − 1)/4

d3
4ke+ 1

= 1−1/O(k)

If we repeat the algorithm k log n times this probability drops to

(1− 1/O(k))k log n = (e−1/O(k))k log n = e−O(log n) = 1/nΩ(1)

 Lukasz Kowalik (UW) Algebraic techniques II August 2014 42 / 46

Correctness

We have checked that:
P 6≡ 0 ⇒ exists k-path
(i.e. non-path walks cancel-out)

The opposite implication not always true! (why?)
it may happen that the only (say) solution P is not L-admissible for
all L ≤ d3

4ke.
But...

E[|{i : vi ∈ V1}|+ |{i : vivi+1 ∈ V2}|] = k
2 + k−1

4 = 3k−1
4

So, by Markov inequality

Pr [P is not L-admissible for all L ≤ d3
4ke] ≤

(3k − 1)/4

d3
4ke+ 1

= 1−1/O(k)

If we repeat the algorithm k log n times this probability drops to

(1− 1/O(k))k log n = (e−1/O(k))k log n = e−O(log n) = 1/nΩ(1)

 Lukasz Kowalik (UW) Algebraic techniques II August 2014 42 / 46

Correctness

We have checked that:
P 6≡ 0 ⇒ exists k-path
(i.e. non-path walks cancel-out)

The opposite implication not always true! (why?)
it may happen that the only (say) solution P is not L-admissible for
all L ≤ d3

4ke.
But...

E[|{i : vi ∈ V1}|+ |{i : vivi+1 ∈ V2}|] = k
2 + k−1

4 = 3k−1
4

So, by Markov inequality

Pr [P is not L-admissible for all L ≤ d3
4ke] ≤

(3k − 1)/4

d3
4ke+ 1

= 1−1/O(k)

If we repeat the algorithm k log n times this probability drops to

(1− 1/O(k))k log n = (e−1/O(k))k log n = e−O(log n) = 1/nΩ(1)

 Lukasz Kowalik (UW) Algebraic techniques II August 2014 42 / 46

Correctness

We have checked that:
P 6≡ 0 ⇒ exists k-path
(i.e. non-path walks cancel-out)

The opposite implication not always true! (why?)
it may happen that the only (say) solution P is not L-admissible for
all L ≤ d3

4ke.
But...

E[|{i : vi ∈ V1}|+ |{i : vivi+1 ∈ V2}|] = k
2 + k−1

4 = 3k−1
4

So, by Markov inequality

Pr [P is not L-admissible for all L ≤ d3
4ke] ≤

(3k − 1)/4

d3
4ke+ 1

= 1−1/O(k)

If we repeat the algorithm k log n times this probability drops to

(1− 1/O(k))k log n = (e−1/O(k))k log n = e−O(log n) = 1/nΩ(1)

 Lukasz Kowalik (UW) Algebraic techniques II August 2014 42 / 46

Conclusion

Theorem (Björklund, Husfeldt, Kaski, Koivisto 2010)

Longest Path in undirected graphs can be solved in
23k/4 = 1.682k(kn)O(1) time and polynomial space.

Note: using a simple trick one can tune the algorithm to get 1.66knO(1).

Corollary (Björklund 2009)

The Hamiltonian Cycle problem in undirected graphs can be solved in
1.66knO(1) time and polynomial space.

 Lukasz Kowalik (UW) Algebraic techniques II August 2014 43 / 46

Conclusion

Theorem (Björklund, Husfeldt, Kaski, Koivisto 2010)

Longest Path in undirected graphs can be solved in
23k/4 = 1.682k(kn)O(1) time and polynomial space.

Note: using a simple trick one can tune the algorithm to get 1.66knO(1).

Corollary (Björklund 2009)

The Hamiltonian Cycle problem in undirected graphs can be solved in
1.66knO(1) time and polynomial space.

 Lukasz Kowalik (UW) Algebraic techniques II August 2014 43 / 46

More applications of the same technique

3-dimensional matching,

k-packing,

edge coloring,

Steiner cycle (aka K -cycle),

rural postman,

graph motif and related problems,

. . .

 Lukasz Kowalik (UW) Algebraic techniques II August 2014 44 / 46

Open problems

Improve over O(1.66n) for Hamiltonian cycle in undirected graphs

Get O(1.99n) for Hamiltonian cycle in directed graphs.

Faster deteministic algorithms for Longest Path (Best known:
2.86knO(1), Fomin, Lokshtanov, Saurabh 2013)

 Lukasz Kowalik (UW) Algebraic techniques II August 2014 45 / 46

Exercises

(Ex 10.16, l) Show an algorithm running in time 2k(nk)O(1) and
polynomial space for finding a colorful k-path in a vertex colored
graph.

(Ex 10.17) Extend the 2k(nk)O(1) algorithm for k-path to weighted
case for weight function w : E → [W]. Your algorithm should run in
time 2kW (nk)O(1).

(Ex 10.18) Show a 23k(nk)O(1) algorithm which determines if a given
graph contains k vertex disjoint triangles.

 Lukasz Kowalik (UW) Algebraic techniques II August 2014 46 / 46

