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Previous lecture

ETH: 3SAT requires O?(2cn) time for some c > 0.

Sparsification Lemma: 3SAT requires O?(2c(n+m)) time for
some c > 0. No 2o(n+m) algorithm.

Corollary: For a number of problems, exact and parameterized
algorithms cannot achieve subexponential time.

Corollary: No f (k) · no(k) algorithm for Clique under ETH, for
any computable f .
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This lecture

Show more exotic lower bounds under ETH.

Slightly super-exponential:
lower bounds excluding O?(2o(k log k)) algorithms.

Hardness for planar problems:

Last lecture: O?(2
√
k) lower bounds for FPT problems.

This lecture: f (k) · no(
√
k) lower bounds for W[1]-hard problems.

Also methodology for proving W[1]-hardness of planar problems.
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Slightly super-exponential time

Slightly super-exponential = O?(2O(k log k)) = O?(kO(k))

Appears naturally:

(a) A branching procedure branches O(k) times, each time
choosing one of poly(k) options.

(b) A treewidth DP has partitions of the bag as the states.

We focus on (a), but lower bounds for (b) are also possible.

Goal: construct a methodology for showing that O?(2O(k log k))
cannot be improved.
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Archetypical problem

We need an archetypical problem for this running time.

Intuition: k independent choices out of k options.

k × k-Clique

Input: A graph H on vertex set [k]× [k]
Question: Is there a k-clique in H that contains exactly one

vertex from each row?

[k] = {1, 2, . . . , k}.
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On a picture
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On k × k-Clique

Note: the input to the problem is of size O(k4).

Trivial O?(kk) algorithm: verify all the choices.

Intuition: k × k-Clique models k independent 1-in-k choices
in the same manner as (Multicolored) Clique models k
independent 1-in-n choices.

Hence, we should imitate the lower bound for Clique from the
previous lecture.

Now: k × k-Clique does not admit an O?(2o(k log k)) algorithm
unless ETH fails.
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Lower bound for k × k-Clique

Starting point: 3-Coloring on an N-vertex graph does not
admit a 2o(N) algorithm.

Take an instance G of 3-Coloring.

Divide the vertices into k := 2N
log3 N

groups, each of size log3 N
2

.

For each of the groups list all the 3-colorings.

There is 3
log3 N

2 =
√
N ≤ k of them.
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Lower bound for k × k-Clique

For i ∈ [k] and j ∈ [
√
N], vertex (i , j) represents the j-th

coloring of the i -th group.

For i 6= i ′, put an edge between (i , j) and (i ′, j ′) if respective
colorings together form a proper coloring of the union of the
groups i and i ′.

Note: colorings that are not proper already on their own groups
will become isolated vertices.

Finally, fill the rows with isolated vertices up to size k .
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Equivalence

If there is a coloring, then there is a clique: trivial.

If there is a clique, then consider the coloring imposed by it.

Suppose there is an edge with endpoints of the same color.

Within a group: the coloring of this group would yield an
isolated vertex.
Between two groups: the corresponding colorings of the groups
wouldn’t be connected by an edge.

Since k = O(N/ logN), an O?(2o(k log k)) algorithm for

k × k-Clique implies a 2o( N
log N
·log N) = 2o(N) algorithm for

3-Coloring.

And we are done.

Micha l Pilipczuk ETH2 11/38



Equivalence

If there is a coloring, then there is a clique: trivial.

If there is a clique, then consider the coloring imposed by it.

Suppose there is an edge with endpoints of the same color.

Within a group: the coloring of this group would yield an
isolated vertex.
Between two groups: the corresponding colorings of the groups
wouldn’t be connected by an edge.

Since k = O(N/ logN), an O?(2o(k log k)) algorithm for

k × k-Clique implies a 2o( N
log N
·log N) = 2o(N) algorithm for

3-Coloring.

And we are done.

Micha l Pilipczuk ETH2 11/38



Equivalence

If there is a coloring, then there is a clique: trivial.

If there is a clique, then consider the coloring imposed by it.

Suppose there is an edge with endpoints of the same color.

Within a group: the coloring of this group would yield an
isolated vertex.
Between two groups: the corresponding colorings of the groups
wouldn’t be connected by an edge.

Since k = O(N/ logN), an O?(2o(k log k)) algorithm for

k × k-Clique implies a 2o( N
log N
·log N) = 2o(N) algorithm for

3-Coloring.

And we are done.

Micha l Pilipczuk ETH2 11/38



Equivalence

If there is a coloring, then there is a clique: trivial.

If there is a clique, then consider the coloring imposed by it.

Suppose there is an edge with endpoints of the same color.

Within a group: the coloring of this group would yield an
isolated vertex.

Between two groups: the corresponding colorings of the groups
wouldn’t be connected by an edge.

Since k = O(N/ logN), an O?(2o(k log k)) algorithm for

k × k-Clique implies a 2o( N
log N
·log N) = 2o(N) algorithm for

3-Coloring.

And we are done.

Micha l Pilipczuk ETH2 11/38



Equivalence

If there is a coloring, then there is a clique: trivial.

If there is a clique, then consider the coloring imposed by it.

Suppose there is an edge with endpoints of the same color.

Within a group: the coloring of this group would yield an
isolated vertex.
Between two groups: the corresponding colorings of the groups
wouldn’t be connected by an edge.

Since k = O(N/ logN), an O?(2o(k log k)) algorithm for

k × k-Clique implies a 2o( N
log N
·log N) = 2o(N) algorithm for

3-Coloring.

And we are done.

Micha l Pilipczuk ETH2 11/38



Equivalence

If there is a coloring, then there is a clique: trivial.

If there is a clique, then consider the coloring imposed by it.

Suppose there is an edge with endpoints of the same color.

Within a group: the coloring of this group would yield an
isolated vertex.
Between two groups: the corresponding colorings of the groups
wouldn’t be connected by an edge.

Since k = O(N/ logN), an O?(2o(k log k)) algorithm for

k × k-Clique implies a 2o( N
log N
·log N) = 2o(N) algorithm for

3-Coloring.

And we are done.

Micha l Pilipczuk ETH2 11/38



Equivalence

If there is a coloring, then there is a clique: trivial.

If there is a clique, then consider the coloring imposed by it.

Suppose there is an edge with endpoints of the same color.

Within a group: the coloring of this group would yield an
isolated vertex.
Between two groups: the corresponding colorings of the groups
wouldn’t be connected by an edge.

Since k = O(N/ logN), an O?(2o(k log k)) algorithm for

k × k-Clique implies a 2o( N
log N
·log N) = 2o(N) algorithm for

3-Coloring.

And we are done.

Micha l Pilipczuk ETH2 11/38



Permutation k × k-Clique

Permutation k × k-Clique

Input: A graph H on vertex set [k]× [k]
Question: Is there a k-clique in H that contains exactly one

vertex from each row and each column?

We would like to get the same lower bound also for this problem.
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Lower bound

Suppose we have an O?(2o(k log k)) algorithm A for Perm
k × k-Clique.

Consider the following algorithm for k × k-Clique.

Shuffle each row uniformly and independently at random.

Apply algorithm A.

Probability that a solution becomes a permutation is k!
kk ≈ e−k .
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Lower bound

We need to repeat the experiment roughly ek times to get error
probability < 1

2
.

But O?(ek · 2o(k log k)) = O?(2o(k log k)).

This gives hardness of Perm k × k-Clique under randomized
ETH.

Note: This can be derandomized, so hardness holds under
deterministic ETH as well.
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k × k-Hitting Set

k × k-Hitting Set

Input: A family F of subsets of [k]× [k]
Question: Is there a set X that contains exactly one vertex from

each row and has a nonempty intersection with every
set of F?

O?(2o(k log k)) lower bound: easy reduction from k × k-Clique.

For every non-edge (i , j)− (i ′, j ′) of H, introduce a set
containing the whole rows i and i ′ apart from (i , j) and (i ′, j ′).

Same works for Perm k × k-Hitting Set and Perm
k × k-Clique.

Micha l Pilipczuk ETH2 15/38



k × k-Hitting Set

k × k-Hitting Set

Input: A family F of subsets of [k]× [k]
Question: Is there a set X that contains exactly one vertex from

each row and has a nonempty intersection with every
set of F?

O?(2o(k log k)) lower bound: easy reduction from k × k-Clique.

For every non-edge (i , j)− (i ′, j ′) of H, introduce a set
containing the whole rows i and i ′ apart from (i , j) and (i ′, j ′).

Same works for Perm k × k-Hitting Set and Perm
k × k-Clique.

Micha l Pilipczuk ETH2 15/38



k × k-Hitting Set

k × k-Hitting Set

Input: A family F of subsets of [k]× [k]
Question: Is there a set X that contains exactly one vertex from

each row and has a nonempty intersection with every
set of F?

O?(2o(k log k)) lower bound: easy reduction from k × k-Clique.

For every non-edge (i , j)− (i ′, j ′) of H, introduce a set
containing the whole rows i and i ′ apart from (i , j) and (i ′, j ′).

Same works for Perm k × k-Hitting Set and Perm
k × k-Clique.

Micha l Pilipczuk ETH2 15/38



k × k-Hitting Set

k × k-Hitting Set

Input: A family F of subsets of [k]× [k]
Question: Is there a set X that contains exactly one vertex from

each row and has a nonempty intersection with every
set of F?

O?(2o(k log k)) lower bound: easy reduction from k × k-Clique.

For every non-edge (i , j)− (i ′, j ′) of H, introduce a set
containing the whole rows i and i ′ apart from (i , j) and (i ′, j ′).

Same works for Perm k × k-Hitting Set and Perm
k × k-Clique.

Micha l Pilipczuk ETH2 15/38



On a picture
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... with thin sets

Seems that k × k-Hitting Set in full generality is not that
useful.

k × k-Hitting Set with thin sets

Every set of F is required to contain at most one vertex from
each row.

One can show an O?(2o(k log k)) lower bound also for
k × k-Hitting Set with thin sets.

Technical reduction with a pivot problem: exercises in the book.

Same holds for Permutation....
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Application: Closest String

Closest String

Input: An alphabet Σ, strings x1, x2, . . . , xn over Σ,
each of length L, and an integer d

Question: Is there a string y ∈ ΣL that has Hamming distance
at most d to each xi?

There are algorithms with running time O?(dd) and O?(|Σ|d).

We now show that this is tight: Under ETH, there is neither
O?(2o(d log d)) nor O?(2o(d log |Σ|)) algorithm.

Reduction from Perm k × k-Hitting Set wts that gives an
instance with L = k , d = k − 1 and |Σ| = k + 1.
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Equivalence

Suppose there is some string y at distance ≤ d = k − 1 from all
the constructed strings.

Eq: y shares at least one symbol with each constructed string.

Sharing with strings of the form iii . . . ii
⇒ y uses every symbol from [k] exactly once.

In particular, y does not use F, so it encodes a solution to
Perm k × k-Hitting Set wts.

y shares a symbol with x created for X ⇔ the solution hits X

The second implication works the same.

Ex: What breaks if we start from k × k-Hitting Set wts?
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Other lower bounds

Time O?(2O(t log t)) appears naturally when DP on treewidth
keeps partitions of the bag as states.

Cycle Packing: pack at least r cycles into the graph.
Vertex Disjoint Paths: find k vertex-disjoint paths
between given pairs of terminals (s1, t1), (s2, t2), . . . , (sk , tk)

Both these problems do not admit O?(2o(t log t)) algorithms when
parameterized by treewidth, unless ETH fails.

Methodology similar to what Daniel will talk about during the
lecture on SETH.
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W[1]-hardness on planar graphs

Previous lecture: typical lower bounds of the form O?(2o(
√
k))

for problems on planar graphs.

On planar graphs, many more problems are FPT, but there are
also W[1]-hard ones.

Typical behaviour:

Upper bound: an nO(
√
k) algorithm

Lower bound: no f (k) · no(
√
k) algorithm for any

computable f , unless ETH fails.

Now: a framework for proving such results.

Recall: under ETH, Clique does not have an f (k) · no(k)

algorithm for any computable f .

Micha l Pilipczuk ETH2 22/38



W[1]-hardness on planar graphs

Previous lecture: typical lower bounds of the form O?(2o(
√
k))

for problems on planar graphs.

On planar graphs, many more problems are FPT, but there are
also W[1]-hard ones.

Typical behaviour:

Upper bound: an nO(
√
k) algorithm

Lower bound: no f (k) · no(
√
k) algorithm for any

computable f , unless ETH fails.

Now: a framework for proving such results.

Recall: under ETH, Clique does not have an f (k) · no(k)

algorithm for any computable f .

Micha l Pilipczuk ETH2 22/38



W[1]-hardness on planar graphs

Previous lecture: typical lower bounds of the form O?(2o(
√
k))

for problems on planar graphs.

On planar graphs, many more problems are FPT, but there are
also W[1]-hard ones.

Typical behaviour:

Upper bound: an nO(
√
k) algorithm

Lower bound: no f (k) · no(
√
k) algorithm for any

computable f , unless ETH fails.

Now: a framework for proving such results.

Recall: under ETH, Clique does not have an f (k) · no(k)

algorithm for any computable f .

Micha l Pilipczuk ETH2 22/38



W[1]-hardness on planar graphs

Previous lecture: typical lower bounds of the form O?(2o(
√
k))

for problems on planar graphs.

On planar graphs, many more problems are FPT, but there are
also W[1]-hard ones.

Typical behaviour:

Upper bound: an nO(
√
k) algorithm

Lower bound: no f (k) · no(
√
k) algorithm for any

computable f , unless ETH fails.

Now: a framework for proving such results.

Recall: under ETH, Clique does not have an f (k) · no(k)

algorithm for any computable f .

Micha l Pilipczuk ETH2 22/38



W[1]-hardness on planar graphs

Previous lecture: typical lower bounds of the form O?(2o(
√
k))

for problems on planar graphs.

On planar graphs, many more problems are FPT, but there are
also W[1]-hard ones.

Typical behaviour:

Upper bound: an nO(
√
k) algorithm

Lower bound: no f (k) · no(
√
k) algorithm for any

computable f , unless ETH fails.

Now: a framework for proving such results.

Recall: under ETH, Clique does not have an f (k) · no(k)

algorithm for any computable f .

Micha l Pilipczuk ETH2 22/38



W[1]-hardness on planar graphs

Previous lecture: typical lower bounds of the form O?(2o(
√
k))

for problems on planar graphs.

On planar graphs, many more problems are FPT, but there are
also W[1]-hard ones.

Typical behaviour:

Upper bound: an nO(
√
k) algorithm

Lower bound: no f (k) · no(
√
k) algorithm for any

computable f , unless ETH fails.

Now: a framework for proving such results.

Recall: under ETH, Clique does not have an f (k) · no(k)

algorithm for any computable f .

Micha l Pilipczuk ETH2 22/38



W[1]-hardness on planar graphs

Previous lecture: typical lower bounds of the form O?(2o(
√
k))

for problems on planar graphs.

On planar graphs, many more problems are FPT, but there are
also W[1]-hard ones.

Typical behaviour:

Upper bound: an nO(
√
k) algorithm

Lower bound: no f (k) · no(
√
k) algorithm for any

computable f , unless ETH fails.

Now: a framework for proving such results.

Recall: under ETH, Clique does not have an f (k) · no(k)

algorithm for any computable f .

Micha l Pilipczuk ETH2 22/38



Grid Tiling

Grid Tiling

Input: Integers k , n and sets Si ,j ⊆ [n]× [n]
for (i , j) ∈ [k]× [k].

Question: Can one pick si ,j ∈ Si ,j for each (i , j) ∈ [k]× [k] s.t.
(a) If si ,j = (a, b) and si+1,j = (a′, b′), then a = a′.
(b) If si ,j = (a, b) and si ,j+1 = (a′, b′), then b = b′.
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On a picture

S1,1 :

(1, 1)

(3, 1)

(2, 4)

S1,1 :

(1, 1)

(3, 1)

(2, 4)

S2,1 :

(2, 2)

(1, 4)

S3,1 :

(1, 3)

(2, 3)

(3, 3)

S1,2 :

(5, 1)

(1, 4)

(5, 3)

S2,2 :

(3, 1)

(1, 2)

S3,2 :

(1, 1)

(1, 3)

S1,3 :

(1, 1)

(2, 4)

(3, 3)

S2,3 :

(2, 2)

(2, 3)

S3,3 :

(2, 3)

(5, 3)

S1,1 :

(1, 1)

(3, 1)

(2, 4)

S1,1 :

(1, 1)

(3, 1)

(2, 4)
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(2, 2)

(1, 4)

S3,1 :

(1, 3)

(2, 3)

(3, 3)

S1,2 :

(5, 1)

(1, 4)

(5, 3)

S2,2 :

(3, 1)

(1, 2)

S3,2 :

(1, 1)

(1, 3)

S1,3 :

(1, 1)

(2, 4)

(3, 3)

S2,3 :

(2, 2)

(2, 3)

S3,3 :

(2, 3)

(5, 3)
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Lower bound for Grid Tiling

Claim: Grid Tiling does not have an f (k) · no(k) algorithm
for any computable f , unless ETH fails.

Take an instance (G , k) of Clique, where V (G ) = [n].

For 1 ≤ i ≤ k, put Si ,i = {(a, a) : 1 ≤ a ≤ n}.
For 1 ≤ i , j ≤ k, i 6= j , put
Si ,j = {(a, b) : a 6= b and ab ∈ E (G )}.

Cells on diagonal ensure that vertices chosen on rows are the
same as vertices chosen on columns.

Cell (i , j) for i 6= j ensures that the i -th and the j-th chosen
vertex are distinct and adjacent.

Hence, choosing vertices on the rows/columns models choosing
a k-clique in G .
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Ideas for applications

A grid has a planar structure that a clique is missing.

Generic reduction from Grid Tiling:

Model each cell with a planar 1-in-n gadget.
Wire the neighboring cells to encode the Grid Tiling
behaviour.
If each cell contributes O(1) to the parameter, then the final
parameter is O(k2).

This gives f (k) · no(
√
k) lower bound under ETH.

Equality in Grid Tiling is not always convenient. For
packing/domination, an inequality would be nicer.
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Grid Tiling with ≤

Grid Tiling with ≤
Input: Integers k , n and sets Si ,j ⊆ [n]× [n]

for (i , j) ∈ [k]× [k].
Question: Can one pick si ,j ∈ Si ,j for each (i , j) ∈ [k]× [k] s.t.

(a) If si ,j = (a, b) and si+1,j = (a′, b′), then a≤a′.
(b) If si ,j = (a, b) and si ,j+1 = (a′, b′), then b≤b′.
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On a picture

S1,1 :

(1, 1)

(3, 1)

(2, 4)

S1,1 :

(1, 1)

(3, 1)

(2, 4)

S2,1 :

(2, 2)

(1, 4)

S3,1 :

(1, 3)

(2, 3)

(3, 3)

S1,2 :

(5, 1)

(1, 4)

(5, 3)

S2,2 :

(3, 1)

(2, 2)

S3,2 :

(1, 1)

(2, 3)

S1,3 :

(1, 1)

(2, 5)

(3, 3)

S2,3 :

(3, 2)

(2, 3)

S3,3 :

(5, 4)

(3, 4)
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Grid Tiling with ≤: lower bound

Grid Tiling with ≤: also no f (k) · no(k) algorithm for any
computable f under ETH.

Technical reduction from standard Grid Tiling.

Idea: replace each row/column with 2 rows/columns. Whenever
in the first row there is some a, on the second there is M − a.
Hence the rows work against each other, implying equality.

Actually we need 4 rows/columns for synchronization, so each
cell is replaced with 16 cells. Quite some details, see the book.
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Application 1: d-Scattered Set

d-Scattered Set

Input: Graph G , integers k and d
Question: Does there exist a set of k vertices in G that

are pairwise at distance at least d from each other?
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On d-Scattered Set

2-Scattered Set=Independent Set

We focus on Planar d-Scattered Set.

When d is constant, then O?(2O(
√
k)) algorithm.

When d is a parameter, then FPT par. by k + d .

When d is unbounded, then there is an nO(
√
k)-time algorithm.

Now: By a reduction from Grid Tiling with ≤, we show
that the problem is W[1]-hard and does not admit an

f (k) · no(
√
k) algorithm under ETH.
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Reduction for Planar d-Scattered Set

S1,1 :

(1, 1)

(3, 1)

(2, 4)

S1,1 :

(1, 1)

(3, 1)

(2, 4)

S2,1 :

(2, 2)

(1, 4)

S3,1 :

(1, 3)

(2, 3)

(3, 3)

S1,2 :

(5, 1)

(1, 4)

(5, 3)

S2,2 :

(3, 1)

(2, 2)

S3,2 :

(1, 1)

(2, 3)

S1,3 :

(1, 1)

(2, 5)

(3, 3)

S2,3 :

(3, 2)

(2, 3)

S3,3 :

(5, 4)

(3, 4)

M = 10 · n10M = 10 · n10 d = 3M + n + 1
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Wrapping up

We asked for a scattered set of size k2, so the parameter
blow-up is quadratic.

This gives an f (k) · no(
√
k) lower bound for Planar

d-Scattered Set.

Upper bound: DP on possible separators of the graph of
interaction between vertices of the solution.

This graph is planar and hence has treewidth O(
√
k).

Plays well with the lower bound: the grid has asymptotically the
worst possible treewidth.
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Application 2: Unit Disk Independent Set

Unit Disk Independent Set

Input: A set of open disks of diameter 1 on the plane,
integer k

Question: Can one select k pairwise disjoint disks?

(Alber, Fiala) Unit Disk Independent Set can be solved in

time nO(
√
k).

Now: Again, by a reduction from Grid Tiling with ≤, we
show that the problem is W[1]-hard and does not admit an

f (k) · no(
√
k) algorithm under ETH.
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Reduction for Unit Disk Independent Set

S1,1 :

(1, 1)

(3, 1)

(2, 4)

S2,1 :

(2, 2)

(1, 4)

S3,1 :

(1, 3)

(2, 3)

(3, 3)

S1,2 :

(5, 1)

(1, 4)

(5, 3)

S2,2 :

(3, 1)

(2, 2)

S3,2 :

(1, 1)

(2, 3)

S1,3 :

(1, 1)

(2, 5)

(3, 3)

S2,3 :

(3, 2)

(2, 3)

S3,3 :

(5, 4)

(3, 4)
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Wrap-up

Pick ε = 1/n10.

For (a, b) ∈ Si ,j , put disk with centre in (i + aε, j + bε).

It is easy to see that disks for (i , j) and (i + 1, j) are disjoint iff
a ≤ a′.

Change of length from shifting by nε vertically will not
compensate for change of length from shifting by ε horizontally.

Hence the choice of disks models the Grid Tiling with ≤
instance.

As we ask for k2 disks, the lower bound follows.
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Conclusions

Hardness of 3SAT turned out to be a very robust assumption
for proving lower bounds on time complexity.

Very different lower bounds:

O?(2o(n)), O?(2o(
√
n)) for classical complexity;

O?(2o(k)), O?(2o(
√
k)), O?(2o(k log k)), O?(22o(k)

) for FPT
problems;

f (k) · no(k) and f (k) · no(
√
k) for W[1]-hard problems;

many others that we did not mention.

Optimality program: understand the precise complexity of the
problem by providing matching upper and lower bounds.
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Exercises

Exercises 14.5–14.9, 14.13
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