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Previous lecture

e ETH: 3SAT requires O*(2°") time for some ¢ > 0.

e Sparsification Lemma: 3SAT requires O*(2€("™)) time for
some ¢ > 0. No 2°("*™) a|gorithm.

@ Corollary: For a number of problems, exact and parameterized
algorithms cannot achieve subexponential time.

e Corollary: No f(k) - n°() algorithm for CLIQUE under ETH, for
any computable f.
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This lecture

@ Show more exotic lower bounds under ETH.
o Slightly super-exponential:

lower bounds excluding O*(2°(k°8¥)) algorithms.
e Hardness for planar problems:

o Last lecture: (’)*(2‘&) lower bounds for FPT problems.
o This lecture: f(k)-n°Vk) lower bounds for W[1]-hard problems.
e Also methodology for proving W[1]-hardness of planar problems.
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Slightly super-exponential time

e Slightly super-exponential = O*(20(kloeh)) — O (kO(K)
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Slightly super-exponential time

o Slightly super-exponential = O*(20(klgk)) = O*(kOk))
@ Appears naturally:

(a) A branching procedure branches O(k) times, each time
choosing one of poly(k) options.
(b) A treewidth DP has partitions of the bag as the states.

@ We focus on (a), but lower bounds for (b) are also possible.

e Goal: construct a methodology for showing that (0*(20(klogk))
cannot be improved.
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Archetypical problem

@ We need an archetypical problem for this running time.

@ Intuition: k independent choices out of k options.

Input: A graph H on vertex set [k] x [k]
Question: s there a k-clique in H that contains exactly one
vertex from each row?

o [k] = {1,2,... k}.
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On k x k-CLIQUE

o Note: the input to the problem is of size O(k*).
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On k x k-CLIQUE

o Note: the input to the problem is of size O(k*).
Trivial O*(k*) algorithm: verify all the choices.

@ Intuition: k x k-CLIQUE models k independent 1-in-k choices
in the same manner as (MULTICOLORED) CLIQUE models k
independent 1-in-n choices.

@ Hence, we should imitate the lower bound for CLIQUE from the
previous lecture.

e Now: k x k-CLIQUE does not admit an O*(2°(k1°6k)) a|gorithm
unless ETH fails.
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Lower bound for k x k-CLIQUE

e Starting point: 3-COLORING on an N-vertex graph does not
admit a 2°(Y) algorithm.
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Lower bound for kK x k-CLIQUE

e Starting point: 3-COLORING on an N-vertex graph does not
admit a 2°(M) algorithm.

@ Take an instance G of 3—COLORING

Iog3 N

@ Divide the vertices into k := groups, each of size

Iog N
@ For each of the groups list all the 3-colorings.

o Thereis 3 2 \/> N < k of them.
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Lower bound for k x k-CLIQUE

@ For i € [k] and j € [V/N], vertex (i, ) represents the j-th
coloring of the i-th group.
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Lower bound for kK x k-CLIQUE

e For i € [k] and j € [V/N], vertex (i,}) represents the j-th
coloring of the i-th group.

@ For i # /', put an edge between (7, /) and (/’, ') if respective
colorings together form a proper coloring of the union of the
groups i and /’.

@ Note: colorings that are not proper already on their own groups
will become isolated vertices.

e Finally, fill the rows with isolated vertices up to size k.
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Equivalence

o If there is a coloring, then there is a clique: trivial.
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Equivalence

o If there is a coloring, then there is a clique: trivial.
o If there is a clique, then consider the coloring imposed by it.
@ Suppose there is an edge with endpoints of the same color.
e Within a group: the coloring of this group would yield an
isolated vertex.
e Between two groups: the corresponding colorings of the groups
wouldn't be connected by an edge.
e Since k = O(N/log N), an O*(2°(kloek)) algorithm for
. . O(L-Iog N) _ 5o(N) .
k x k-CLIQUE implies a 2°\ieg¥ =2 algorithm for
3-COLORING.
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Equivalence

o If there is a coloring, then there is a clique: trivial.
o If there is a clique, then consider the coloring imposed by it.
@ Suppose there is an edge with endpoints of the same color.
e Within a group: the coloring of this group would yield an
isolated vertex.

e Between two groups: the corresponding colorings of the groups
wouldn't be connected by an edge.

e Since k = O(N/log N), an O*(2°(klogk)) algorithm for
k x k-CLIQUE implies a 2°(@7 & N) — 20(M) lgorithm for
3-COLORING.

@ And we are done.
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PERMUTATION k X k-CLIQUE

PERMUTATION k x k-CLIQUE

Input: A graph H on vertex set [k] x [k]
Question: s there a k-clique in H that contains exactly one
vertex from each row and each column?
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PERMUTATION k X k-CLIQUE

PERMUTATION k x k-CLIQUE

Input: A graph H on vertex set [k] x [k]
Question: s there a k-clique in H that contains exactly one
vertex from each row and each column?

@ We would like to get the same lower bound also for this problem.
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Lower bound

@ Suppose we have an 0*(2°(klgk)) algorithm A for PERM
k x k-CLIQUE.
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Lower bound

@ Suppose we have an 0*(2°(klgk)) algorithm A for PERM
k x k-CLIQUE.

@ Consider the following algorithm for k x k-CLIQUE.
@ Shuffle each row uniformly and independently at random.

@ Apply algorithm A.

Michat Pilipczuk ETH2 13/38



Lower bound

@ Suppose we have an 0*(2°(klgk)) algorithm A for PERM
k x k-CLIQUE.

@ Consider the following algorithm for k x k-CLIQUE.

@ Shuffle each row uniformly and independently at random.

e Apply algorithm A.

| —
k.%ek_

@ Probability that a solution becomes a permutation is %

Michat Pilipczuk ETH2 13/38



Lower bound

@ We need to repeat the experiment roughly e* times to get error
probability < 1.
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Lower bound

@ We need to repeat the experiment roughly e* times to get error
probability < 1.
e But O*(ek . zo(klogk)) — O*(2o(klogk))_

@ This gives hardness of PERM k x k-CLIQUE under randomized
ETH.

@ Note: This can be derandomized, so hardness holds under
deterministic ETH as well.
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k X k-HITTING SET

Input: A family F of subsets of [k] x [K]

Question: Is there a set X that contains exactly one vertex from
each row and has a nonempty intersection with every
set of F7?
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k X k-HITTING SET

Input: A family F of subsets of [k] x [K]

Question: Is there a set X that contains exactly one vertex from
each row and has a nonempty intersection with every
set of F7?

o O*(2°(kloek)) Jower bound: easy reduction from k x k-CLIQUE.

o For every non-edge (i,j) — (i',j") of H, introduce a set
containing the whole rows i and i’ apart from (i,;) and (', ).
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k X k-HITTING SET

Input: A family F of subsets of [k] x [K]

Question: Is there a set X that contains exactly one vertex from
each row and has a nonempty intersection with every
set of F7?

o O*(2°(kloek)) Jower bound: easy reduction from k x k-CLIQUE.

o For every non-edge (i,j) — (i',/") of H, introduce a set
containing the whole rows i and i’ apart from (i, ) and (7', ).

@ Same works for PERM k x k-HITTING SET and PERM
k x k-CLIQUE.
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... WITH THIN SETS

@ Seems that k x k-HITTING SET in full generality is not that
useful.
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... WITH THIN SETS

(]

Seems that k x k-HITTING SET in full generality is not that
useful.
@ k X k-HITTING SET WITH THIN SETS

o Every set of F is required to contain at most one vertex from
each row.

One can show an O*(2°(kl°gk)) |ower bound also for
k x k-HITTING SET WITH THIN SETS.

Technical reduction with a pivot problem: exercises in the book.
Same holds for PERMUTATION....
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Application: CLOSEST STRING

Input: An alphabet X, strings xi, xo, ..., X, over X,
each of length L, and an integer d

Question: Is there a string y € ¥ that has Hamming distance
at most d to each x;?
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Application: CLOSEST STRING

Input: An alphabet X, strings xi, xo, ..., X, over X,
each of length L, and an integer d

Question: Is there a string y € ¥ that has Hamming distance
at most d to each x;?

@ There are algorithms with running time O*(d?) and O*(|Z|?).

@ We now show that this is tight: Under ETH, there is neither
O*(2°0(dleed)) nor O*(20(d1e 1)) algorithm.

@ Reduction from PERM k x k-HITTING SET WTS that gives an
instance with L =k, d =k —1and |X| = k+ 1.
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Reduction

1 (@ o (@ e e
: @ o o (@ e
e @ @ o o
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Reduction

1 2 3 4 5 5 _ [k] U {*}
1 (@ o (@ e e
Create strings:
: @ o o (@ e
e @ @ o o
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Reduction

T = [K]U{}

Create strings:

([ ]
@‘ 11111
22222
33333
e @@ o e
44444

55555

»
[ ]
[ J
[ J
(]
[ ]
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Reduction

Michat Pilipczuk

ETH2

T = [Klu{x}

Create strings:

11111
22222
33333
44444
55555

O 142%5
O 3% 3%1

11%43

19/38



Equivalence

@ Suppose there is some string y at distance < d = k — 1 from all
the constructed strings.
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@ Sharing with strings of the form Jjii ... i
= y uses every symbol from [k] exactly once.
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Equivalence

@ Suppose there is some string y at distance < d = k — 1 from all
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@ Eq: y shares at least one symbol with each constructed string.

@ Sharing with strings of the form iii ... ii
= y uses every symbol from [k] exactly once.
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Equivalence

@ Suppose there is some string y at distance < d = k — 1 from all
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@ Sharing with strings of the form iii ... ii
= y uses every symbol from [k] exactly once.

@ In particular, y does not use %, so it encodes a solution to
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Equivalence

@ Suppose there is some string y at distance < d = k — 1 from all
the constructed strings.

@ Eq: y shares at least one symbol with each constructed string.

@ Sharing with strings of the form iii ... ii
= y uses every symbol from [k] exactly once.

@ In particular, y does not use %, so it encodes a solution to
PERM k x k-HITTING SET WTS.

@ y shares a symbol with x created for X < the solution hits X

@ The second implication works the same.

o Ex: What breaks if we start from k x k-HITTING SET WTS?
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Other lower bounds

e Time O*(29(t°¢t)) appears naturally when DP on treewidth
keeps partitions of the bag as states.
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Other lower bounds

e Time O*(29(t°¢%)) appears naturally when DP on treewidth
keeps partitions of the bag as states.

o CYCLE PACKING: pack at least r cycles into the graph.
e VERTEX DISJOINT PATHS: find k vertex-disjoint paths
between given pairs of terminals (s1, t1), (s2, t2), - - -, (Sk, tk)

@ Both these problems do not admit O*(2°(t'°¢%)) algorithms when
parameterized by treewidth, unless ETH fails.

@ Methodology similar to what Daniel will talk about during the
lecture on SETH.
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W/1]-hardness on planar graphs

e Previous lecture: typical lower bounds of the form O*(20(VH))
for problems on planar graphs.

Michat Pilipczuk ETH2 22/38



W/1]-hardness on planar graphs

o Previous lecture: typical lower bounds of the form O*(20(VH))
for problems on planar graphs.

@ On planar graphs, many more problems are FPT, but there are
also W[1]-hard ones.

Michat Pilipczuk ETH2 22/38



W/1]-hardness on planar graphs

o Previous lecture: typical lower bounds of the form O*(20(VH))
for problems on planar graphs.

@ On planar graphs, many more problems are FPT, but there are
also W[1]-hard ones.

@ Typical behaviour:

Michat Pilipczuk ETH2 22/38



W/1]-hardness on planar graphs

o Previous lecture: typical lower bounds of the form O*(20(VH))
for problems on planar graphs.
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W/1]-hardness on planar graphs

o Previous lecture: typical lower bounds of the form O*(20(VH))
for problems on planar graphs.

@ On planar graphs, many more problems are FPT, but there are
also W[1]-hard ones.
@ Typical behaviour:
e Upper bound: an nOWk) algorithm
o Lower bound: no f(k) - n°(Vk) algorithm for any
computable f, unless ETH fails.
@ Now: a framework for proving such results.

@ Recall: under ETH, CLIQUE does not have an f(k) - ne(k)
algorithm for any computable f.
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GRID TILING

GRID TILING

Input: Integers k, n and sets S;; C [n] x
for (i,)) € [k] x [k].
Question: Can one pick s;; €

(a) Ifs;;=
(b) Ifs;j=

(a,b) and siy1; =
(a,b) and s;j11 =

S;j for each (i,j) € [k]

[]

[K] s.t.
(a',b'), then a = 4.
(a',b'), then b=1b'.

4
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S11: Sip: S13:
L@y | | [ 61| | [(L1) ]
- (3,1 | - (1,4) | . (2,9) |
L@y ]| [ 63)] | [ B3]

So1: Soo: So3:

- (2,2) | . (3.1 | - (2,2) |
- (1,9) | L (L,2) | L (2,3) |
S31: S30: S33:

L (1,3) | (1) | L (2,3) |
23 | | @3] | [ (3]

(3,3)
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Lower bound for GRID TILING

e Claim: GRID TILING does not have an f(k) - n°() algorithm
for any computable f, unless ETH fails.
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o For1 <i<k, putS;i={(a,a):1<a<n}.
e For1 <i,j<k,i#j, put
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same as vertices chosen on columns.
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Lower bound for GRID TILING

e Claim: GRID TILING does not have an f(k) - n°() algorithm
for any computable f, unless ETH fails.
@ Take an instance (G, k) of CLIQUE, where V(G) = [n].
o For1 <i<k, putS;i={(a,a):1<a<n}.
e For1 <i,j<k,i#j, put
Sij={(a,b): a# b and ab € E(G)}.
@ Cells on diagonal ensure that vertices chosen on rows are the
same as vertices chosen on columns.
o Cell (i,)) for i # j ensures that the i-th and the j-th chosen
vertex are distinct and adjacent.
@ Hence, choosing vertices on the rows/columns models choosing
a k-clique in G.
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|deas for applications

@ A grid has a planar structure that a clique is missing.
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|deas for applications

@ A grid has a planar structure that a clique is missing.
@ Generic reduction from GRID TILING:
e Model each cell with a planar 1-in-n gadget.
o Wire the neighboring cells to encode the GRID TILING
behaviour.

o If each cell contributes O(1) to the parameter, then the final
parameter is O(k?).

o This gives f(k) - n°Vk) lower bound under ETH.

e Equality in GRID TILING is not always convenient. For
packing/domination, an inequality would be nicer.
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GRID TILING WITH <

GRID TILING WITH <

Input: Integers k, n and sets S;; C [n] x [n]
for (i,)) € [k] x [].
Question: Can one pick s;; € S;; for each (i,j) € [k] x [K] s.t.
(a) Ifsij=(a,b)and si1q; = (&, b'), then a<a’.
(b) If s;j=(a,b)and s; ;41 = (a',b'), then b<b'.

v
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S11: Sip: S13:
L@y | | [ 61| | [(L1) ]
- (3,1 | - (1,4) | | (2,5) |
L@y ]| [ 63)] | [ B3]

So1: Soo: So3:
L2 ] | LGY ] | [ B2 ]
- (1,9) | L (2,2) | L (2,3) |

S31: S30: S33:
L@y | @y ] | [ (5.4
23] | 23] | G|

(3,3
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GRID TILING WITH <: lower bound

e GRID TILING WITH <: also no f(k) - n°) algorithm for any
computable f under ETH.
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GRID TILING WITH <: lower bound

e GRID TILING WITH <: also no f(k) - n°) algorithm for any
computable f under ETH.

@ Technical reduction from standard GRID TILING.

@ lIdea: replace each row/column with 2 rows/columns. Whenever
in the first row there is some a, on the second there is M — a.
Hence the rows work against each other, implying equality.
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GRID TILING WITH <: lower bound

e GRID TILING WITH <: also no f(k) - n°) algorithm for any
computable f under ETH.

@ Technical reduction from standard GRID TILING.

e lIdea: replace each row/column with 2 rows/columns. Whenever
in the first row there is some a, on the second there is M — a.
Hence the rows work against each other, implying equality.

@ Actually we need 4 rows/columns for synchronization, so each
cell is replaced with 16 cells. Quite some details, see the book.
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Application 1: d-SCATTERED SET

d-SCATTERED SET

Input: Graph G, integers k and d
Question: Does there exist a set of k vertices in G that
are pairwise at distance at least d from each other?
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On d-SCATTERED SET

@ 2-SCATTERED SET=INDEPENDENT SET

Michat Pilipczuk ETH2 31/38



On d-SCATTERED SET

@ 2-SCATTERED SET=INDEPENDENT SET
@ We focus on PLANAR d-SCATTERED SET.

Michat Pilipczuk ETH2 31/38



On d-SCATTERED SET

@ 2-SCATTERED SET=INDEPENDENT SET
@ We focus on PLANAR d-SCATTERED SET.
@ When d is constant, then ©O*(2°(VK)) algorithm.

Michat Pilipczuk ETH2 31/38



On d-SCATTERED SET

@ 2-SCATTERED SET=INDEPENDENT SET

@ We focus on PLANAR d-SCATTERED SET.

@ When d is constant, then ©O*(2°(VK)) algorithm.
@ When d is a parameter, then FPT par. by kK + d.

Michat Pilipczuk ETH2 31/38



On d-SCATTERED SET

@ 2-SCATTERED SET=INDEPENDENT SET

@ We focus on PLANAR d-SCATTERED SET.

@ When d is constant, then ©O*(2°(VK)) algorithm.

@ When d is a parameter, then FPT par. by kK + d.

e When d is unbounded, then there is an n®V%)-time algorithm.

Michat Pilipczuk ETH2 31/38



On d-SCATTERED SET

@ 2-SCATTERED SET=INDEPENDENT SET

@ We focus on PLANAR d-SCATTERED SET.

@ When d is constant, then ©O*(2°(VK)) algorithm.

@ When d is a parameter, then FPT par. by kK + d.

o When d is unbounded, then there is an n®(V%)-time algorithm.

@ Now: By a reduction from GRID TILING WITH <, we show
that the problem is W[1]-hard and does not admit an
f(k) - n°Vk) algorithm under ETH.
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Reduction for PLANAR d-SCATTERED SET

S11: Sip: S13:
L@y | | [ 61| | [(L1) ]
- (3,1 | - (1,4) | | (2,5) |
L@y ]| [ 63)] | [ B3]

So1: Soo: So3:
L2 ] | LGY ] | [ B2 ]
- (1,9) | L (2,2) | L (2,3) |

Ss1: 532 S33:

L (1,3) | L (L1) ]  (5,4) |
(23] | | (23 )| | (B4
(3,3)
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Reduction for PLANAR d-SCATTERED SET

M =10 - a0
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Reduction for PLANAR d-SCATTERED SET

M =10 - 1 d=3M+n+1
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Wrapping up

@ We asked for a scattered set of size k2, so the parameter
blow-up is quadratic.
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Wrapping up
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@ Upper bound: DP on possible separators of the graph of
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Wrapping up

@ We asked for a scattered set of size k2, so the parameter
blow-up is quadratic.

o This gives an f(k) - n°V%) lower bound for PLANAR
d-SCATTERED SET.

e Upper bound: DP on possible separators of the graph of
interaction between vertices of the solution.

o This graph is planar and hence has treewidth O(vk).

@ Plays well with the lower bound: the grid has asymptotically the
worst possible treewidth.

Michat Pilipczuk ETH2 33/38



Application 2: UNIT DISK INDEPENDENT SET

UNIT DiSK INDEPENDENT SET
Input: A set of open disks of diameter 1 on the plane,
integer k
Question: Can one select k pairwise disjoint disks?
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Question: Can one select k pairwise disjoint disks?

@ (Alber, Fiala) UNIT DISK INDEPENDENT SET can be solved in
time n®(Vh),
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Application 2: UNIT DISK INDEPENDENT SET

UNIT DISK INDEPENDENT SET

Input: A set of open disks of diameter 1 on the plane,
integer k

Question: Can one select k pairwise disjoint disks?

o (Alber, Fiala) UNIT DISK INDEPENDENT SET can be solved in
time n@(VA),

@ Now: Again, by a reduction from GRID TILING WITH <, we
show that the problem is W([1]-hard and does not admit an
f(k) - n°Vk) algorithm under ETH.
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Reduction for UNIT DISK INDEPENDENT SET

S1,3: S$23: S$33:
@y | G2 | .4 |
@5 | 23 | G4 |
(3,3)

S1,2¢ S22 S3,2¢
61 | Gy | @y |
ws | @2 | 23 |
(5,3)

S1,1: So1t S31:
@y | ,2) (1,3)
G,y | ws | 23 |
@, 4) 3,3)
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e Pick e =1/n%.
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e For (a, b) € S5;j, put disk with centre in (i + ac,j + be).
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o Change of length from shifting by ne vertically will not
compensate for change of length from shifting by € horizontally.

Michat Pilipczuk ETH2 36/38



(]

Pick e = 1/n%.
For (a, b) € S;;, put disk with centre in (i + ae, j + be).
It is easy to see that disks for (/,/) and (i + 1, /) are disjoint iff
a<a.
e Change of length from shifting by ne vertically will not
compensate for change of length from shifting by € horizontally.

Hence the choice of disks models the GRID TILING WITH <
instance.
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(]

Pick e = 1/n%.
For (a, b) € S;;, put disk with centre in (i + ae, j + be).
It is easy to see that disks for (/,/) and (i + 1, /) are disjoint iff
a<a.
e Change of length from shifting by ne vertically will not
compensate for change of length from shifting by € horizontally.

Hence the choice of disks models the GRID TILING WITH <
instance.

As we ask for k? disks, the lower bound follows.
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Conclusions

@ Hardness of 3SAT turned out to be a very robust assumption
for proving lower bounds on time complexity.
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Conclusions

@ Hardness of 3SAT turned out to be a very robust assumption
for proving lower bounds on time complexity.
@ Very different lower bounds:
o O*(2°(M), O*(2°(v") for classical complexity;
o 0*(2°00), O*(20VR)), O*(20(kleg k)y, O*(22°)) for FPT
problems;
o f(k)-n°Kk) and (k) - n°Vk) for W[1]-hard problems;
e many others that we did not mention.
e Optimality program: understand the precise complexity of the
problem by providing matching upper and lower bounds.
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Exercises

Exercises 14.5-14.9, 14.13
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