Lower bounds based on ETH Part 2

Michał Pilipczuk

Institutt for Informatikk, Universitetet i Bergen

August $21^{\rm st}$, 2014

• ETH: 3SAT requires $\mathcal{O}^{\star}(2^{cn})$ time for some c > 0.

- **ETH**: 3SAT requires $\mathcal{O}^*(2^{cn})$ time for some c > 0.
- Sparsification Lemma: 3SAT requires O[★](2^{c(n+m)}) time for some c > 0. No 2^{o(n+m)} algorithm.

- **ETH**: 3SAT requires $\mathcal{O}^*(2^{cn})$ time for some c > 0.
- Sparsification Lemma: 3SAT requires \$\mathcal{O}^*(2^{c(n+m)})\$ time for some \$c > 0\$. No 2^{o(n+m)} algorithm.
- **Corollary**: For a number of problems, exact and parameterized algorithms cannot achieve subexponential time.

- **ETH**: 3SAT requires $\mathcal{O}^*(2^{cn})$ time for some c > 0.
- Sparsification Lemma: 3SAT requires \$\mathcal{O}^*(2^{c(n+m)})\$ time for some \$c > 0\$. No 2^{o(n+m)} algorithm.
- **Corollary**: For a number of problems, exact and parameterized algorithms cannot achieve subexponential time.
- **Corollary**: No $f(k) \cdot n^{o(k)}$ algorithm for CLIQUE under ETH, for any computable f.

• Show more exotic lower bounds under ETH.

- Show more exotic lower bounds under ETH.
- Slightly super-exponential:

lower bounds excluding $\mathcal{O}^*(2^{o(k \log k)})$ algorithms.

- Show more exotic lower bounds under ETH.
- Slightly super-exponential: lower bounds excluding \$\mathcal{O}^*(2^{o(k \log k)})\$ algorithms.
- Hardness for planar problems:

This lecture

- Show more exotic lower bounds under ETH.
- Slightly super-exponential: lower bounds excluding O^{*}(2^{o(k log k)}) algorithms.
- Hardness for planar problems:
 - Last lecture: $\mathcal{O}^{\star}(2^{\sqrt{k}})$ lower bounds for FPT problems.

This lecture

- Show more exotic lower bounds under ETH.
- Slightly super-exponential: lower bounds excluding \$\mathcal{O}^*(2^{o(k \log k)})\$ algorithms.
- Hardness for planar problems:
 - Last lecture: $\mathcal{O}^{\star}(2^{\sqrt{k}})$ lower bounds for FPT problems.
 - This lecture: $f(k) \cdot n^{o(\sqrt{k})}$ lower bounds for W[1]-hard problems.

This lecture

- Show more exotic lower bounds under ETH.
- Slightly super-exponential: lower bounds excluding O^{*}(2^{o(k log k)}) algorithms.
- Hardness for planar problems:
 - Last lecture: $\mathcal{O}^{\star}(2^{\sqrt{k}})$ lower bounds for FPT problems.
 - This lecture: $f(k) \cdot n^{o(\sqrt{k})}$ lower bounds for W[1]-hard problems.
 - $\bullet\,$ Also methodology for proving $\mathrm{W}[1]\text{-hardness}$ of planar problems.

Slightly super-exponential time

• Slightly super-exponential = $\mathcal{O}^{\star}(2^{\mathcal{O}(k \log k)}) = \mathcal{O}^{\star}(k^{\mathcal{O}(k)})$

Slightly super-exponential time

- Slightly super-exponential = $\mathcal{O}^{\star}(2^{\mathcal{O}(k \log k)}) = \mathcal{O}^{\star}(k^{\mathcal{O}(k)})$
- Appears naturally:

Slightly super-exponential time

- Slightly super-exponential = $\mathcal{O}^{\star}(2^{\mathcal{O}(k \log k)}) = \mathcal{O}^{\star}(k^{\mathcal{O}(k)})$
- Appears naturally:
 - (a) A branching procedure branches O(k) times, each time choosing one of poly(k) options.

- Slightly super-exponential = $\mathcal{O}^*(2^{\mathcal{O}(k \log k)}) = \mathcal{O}^*(k^{\mathcal{O}(k)})$
- Appears naturally:
 - (a) A branching procedure branches O(k) times, each time choosing one of poly(k) options.
 - (b) A treewidth DP has partitions of the bag as the states.

- Slightly super-exponential = $\mathcal{O}^{\star}(2^{\mathcal{O}(k \log k)}) = \mathcal{O}^{\star}(k^{\mathcal{O}(k)})$
- Appears naturally:
 - (a) A branching procedure branches O(k) times, each time choosing one of poly(k) options.
 - (b) A treewidth DP has partitions of the bag as the states.
- We focus on (a), but lower bounds for (b) are also possible.

- Slightly super-exponential = $\mathcal{O}^{\star}(2^{\mathcal{O}(k \log k)}) = \mathcal{O}^{\star}(k^{\mathcal{O}(k)})$
- Appears naturally:
 - (a) A branching procedure branches O(k) times, each time choosing one of poly(k) options.
 - (b) A treewidth DP has partitions of the bag as the states.
- We focus on (a), but lower bounds for (b) are also possible.
- **Goal**: construct a methodology for showing that $\mathcal{O}^*(2^{\mathcal{O}(k \log k)})$ cannot be improved.

Archetypical problem

• We need an archetypical problem for this running time.

- We need an archetypical problem for this running time.
- Intuition: k independent choices out of k options.

Archetypical problem

- We need an archetypical problem for this running time.
- Intuition: k independent choices out of k options.

$k \times k$ -CLIQUE

Input:A graph H on vertex set $[k] \times [k]$ Question:Is there a k-clique in H that contains exactly one
vertex from each row?

Archetypical problem

- We need an archetypical problem for this running time.
- Intuition: k independent choices out of k options.

$k \times k$ -CLIQUE

Input:A graph H on vertex set $[k] \times [k]$ Question:Is there a k-clique in H that contains exactly one
vertex from each row?

• $[k] = \{1, 2, \ldots, k\}.$

On a picture

•	•	•	•	•
•	•	•	•	•
•	•	•	•	•
•	•	•	•	•
•	•	•	•	•

Michał Pilipczuk ETH2

On a picture

• **Note**: the input to the problem is of size $\mathcal{O}(k^4)$.

- **Note**: the input to the problem is of size $\mathcal{O}(k^4)$.
- Trivial $\mathcal{O}^*(k^k)$ algorithm: verify all the choices.

- **Note**: the input to the problem is of size $\mathcal{O}(k^4)$.
- Trivial $\mathcal{O}^*(k^k)$ algorithm: verify all the choices.
- Intuition: $k \times k$ -CLIQUE models k independent 1-in-k choices in the same manner as (MULTICOLORED) CLIQUE models kindependent 1-in-n choices.

- **Note**: the input to the problem is of size $\mathcal{O}(k^4)$.
- Trivial $\mathcal{O}^*(k^k)$ algorithm: verify all the choices.
- Intuition: $k \times k$ -CLIQUE models k independent 1-in-k choices in the same manner as (MULTICOLORED) CLIQUE models kindependent 1-in-n choices.
- Hence, we should imitate the lower bound for CLIQUE from the previous lecture.

- **Note**: the input to the problem is of size $\mathcal{O}(k^4)$.
- Trivial $\mathcal{O}^*(k^k)$ algorithm: verify all the choices.
- Intuition: $k \times k$ -CLIQUE models k independent 1-in-k choices in the same manner as (MULTICOLORED) CLIQUE models kindependent 1-in-n choices.
- Hence, we should imitate the lower bound for CLIQUE from the previous lecture.
- Now: $k \times k$ -CLIQUE does not admit an $\mathcal{O}^*(2^{o(k \log k)})$ algorithm unless ETH fails.

• **Starting point**: 3-COLORING on an *N*-vertex graph does not admit a 2^{o(N)} algorithm.

- **Starting point**: 3-COLORING on an *N*-vertex graph does not admit a 2^{o(N)} algorithm.
- Take an instance *G* of 3-COLORING.

- **Starting point**: 3-COLORING on an *N*-vertex graph does not admit a 2^{o(N)} algorithm.
- Take an instance *G* of 3-COLORING.
- Divide the vertices into $k := \frac{2N}{\log_3 N}$ groups, each of size $\frac{\log_3 N}{2}$.

- **Starting point**: 3-COLORING on an *N*-vertex graph does not admit a 2^{o(N)} algorithm.
- Take an instance *G* of 3-COLORING.
- Divide the vertices into $k := \frac{2N}{\log_2 N}$ groups, each of size $\frac{\log_3 N}{2}$.
- For each of the groups list all the 3-colorings.

- **Starting point**: 3-COLORING on an *N*-vertex graph does not admit a 2^{o(N)} algorithm.
- Take an instance *G* of 3-COLORING.
- Divide the vertices into $k := \frac{2N}{\log_2 N}$ groups, each of size $\frac{\log_3 N}{2}$.
- For each of the groups list all the 3-colorings.
 - There is $3^{\frac{\log_3 N}{2}} = \sqrt{N} \le k$ of them.

• For $i \in [k]$ and $j \in [\sqrt{N}]$, vertex (i, j) represents the *j*-th coloring of the *i*-th group.

- For i ∈ [k] and j ∈ [√N], vertex (i, j) represents the j-th coloring of the i-th group.
- For i ≠ i', put an edge between (i, j) and (i', j') if respective colorings together form a proper coloring of the union of the groups i and i'.

- For i ∈ [k] and j ∈ [√N], vertex (i, j) represents the j-th coloring of the i-th group.
- For i ≠ i', put an edge between (i, j) and (i', j') if respective colorings together form a proper coloring of the union of the groups i and i'.
- Note: colorings that are not proper already on their own groups will become isolated vertices.
Lower bound for $k \times k$ -CLIQUE

- For i ∈ [k] and j ∈ [√N], vertex (i, j) represents the j-th coloring of the i-th group.
- For i ≠ i', put an edge between (i, j) and (i', j') if respective colorings together form a proper coloring of the union of the groups i and i'.
- Note: colorings that are not proper already on their own groups will become isolated vertices.
- Finally, fill the rows with isolated vertices up to size k.

•	•	•	•	•
•	•	•	•	•
•	•	•	•	•
•	•	•	•	•
•	•	•	•	•

•	•	•	•	•
Ŷ	•	•	٠	•
•	•	•	•	•
•	•	•	•	•
•	•	•	•	•

• If there is a coloring, then there is a clique: trivial.

- If there is a coloring, then there is a clique: trivial.
- If there is a clique, then consider the coloring imposed by it.

- If there is a coloring, then there is a clique: trivial.
- If there is a clique, then consider the coloring imposed by it.
- Suppose there is an edge with endpoints of the same color.

- If there is a coloring, then there is a clique: trivial.
- If there is a clique, then consider the coloring imposed by it.
- Suppose there is an edge with endpoints of the same color.
 - Within a group: the coloring of this group would yield an isolated vertex.

- If there is a coloring, then there is a clique: trivial.
- If there is a clique, then consider the coloring imposed by it.
- Suppose there is an edge with endpoints of the same color.
 - Within a group: the coloring of this group would yield an isolated vertex.
 - Between two groups: the corresponding colorings of the groups wouldn't be connected by an edge.

- If there is a coloring, then there is a clique: trivial.
- If there is a clique, then consider the coloring imposed by it.
- Suppose there is an edge with endpoints of the same color.
 - Within a group: the coloring of this group would yield an isolated vertex.
 - Between two groups: the corresponding colorings of the groups wouldn't be connected by an edge.
- Since k = O(N/log N), an O^{*}(2^{o(k log k)}) algorithm for k × k-CLIQUE implies a 2^{o(N log N)} = 2^{o(N)} algorithm for 3-COLORING.

- If there is a coloring, then there is a clique: trivial.
- If there is a clique, then consider the coloring imposed by it.
- Suppose there is an edge with endpoints of the same color.
 - Within a group: the coloring of this group would yield an isolated vertex.
 - Between two groups: the corresponding colorings of the groups wouldn't be connected by an edge.
- Since k = O(N / log N), an O^{*}(2^{o(k log k)}) algorithm for k × k-CLIQUE implies a 2^{o(N}/_{log N}·log N) = 2^{o(N)} algorithm for 3-COLORING.
- And we are done.

Permutation $k \times k$ -Clique

Permutation $k \times k$ -Clique

Input:A graph H on vertex set $[k] \times [k]$ Question:Is there a k-clique in H that contains exactly one
vertex from each row and each column?

Permutation $k \times k$ -Clique

PERMUTATION $k \times k$ -CLIQUE

Input:A graph H on vertex set $[k] \times [k]$ Question:Is there a k-clique in H that contains exactly one
vertex from each row and each column?

• We would like to get the same lower bound also for this problem.

• Suppose we have an $\mathcal{O}^{\star}(2^{o(k \log k)})$ algorithm \mathcal{A} for PERM $k \times k$ -CLIQUE.

- Suppose we have an $\mathcal{O}^{\star}(2^{o(k \log k)})$ algorithm \mathcal{A} for PERM $k \times k$ -CLIQUE.
- Consider the following algorithm for $k \times k$ -CLIQUE.

- Suppose we have an \$\mathcal{O}^*(2^{o(k \log k)})\$ algorithm \$\mathcal{A}\$ for PERM \$k \times k-CLIQUE\$.
- Consider the following algorithm for $k \times k$ -CLIQUE.
- Shuffle each row uniformly and independently at random.

- Suppose we have an \$\mathcal{O}^*(2^{o(k \log k)})\$ algorithm \$\mathcal{A}\$ for PERM \$k \times k-CLIQUE\$.
- Consider the following algorithm for $k \times k$ -CLIQUE.
- Shuffle each row uniformly and independently at random.
- Apply algorithm \mathcal{A} .

- Suppose we have an \$\mathcal{O}^*(2^{o(k \log k)})\$ algorithm \$\mathcal{A}\$ for PERM \$k \times k-CLIQUE\$.
- Consider the following algorithm for $k \times k$ -CLIQUE.
- Shuffle each row uniformly and independently at random.
- Apply algorithm \mathcal{A} .
- Probability that a solution becomes a permutation is $\frac{k!}{k^k} \approx e^{-k}$.

 We need to repeat the experiment roughly e^k times to get error probability < ¹/₂.

- We need to repeat the experiment roughly e^k times to get error probability < ¹/₂.
- But $\mathcal{O}^*(e^k \cdot 2^{o(k \log k)}) = \mathcal{O}^*(2^{o(k \log k)}).$

- We need to repeat the experiment roughly e^k times to get error probability < ¹/₂.
- But $\mathcal{O}^*(e^k \cdot 2^{o(k \log k)}) = \mathcal{O}^*(2^{o(k \log k)}).$
- This gives hardness of PERM $k \times k$ -CLIQUE under randomized ETH.

- We need to repeat the experiment roughly e^k times to get error probability < ¹/₂.
- But $\mathcal{O}^{\star}(e^k \cdot 2^{o(k \log k)}) = \mathcal{O}^{\star}(2^{o(k \log k)}).$
- This gives hardness of PERM *k* × *k*-CLIQUE under randomized ETH.
- **Note**: This can be derandomized, so hardness holds under deterministic ETH as well.

$k \times k$ -Hitting Set

Input: A family \mathcal{F} of subsets of $[k] \times [k]$

Question: Is there a set X that contains exactly one vertex from each row and has a nonempty intersection with every set of \mathcal{F} ?

$k \times k$ -Hitting Set

Input: A family \mathcal{F} of subsets of $[k] \times [k]$

Question: Is there a set X that contains exactly one vertex from each row and has a nonempty intersection with every set of \mathcal{F} ?

• $\mathcal{O}^{\star}(2^{o(k \log k)})$ lower bound: easy reduction from $k \times k$ -CLIQUE.

$k \times k$ -Hitting Set

Input:A family \mathcal{F} of subsets of $[k] \times [k]$ Question:Is there a set X that contains exactly one vertex from
each row and has a nonempty intersection with every
set of \mathcal{F} ?

- $\mathcal{O}^{\star}(2^{o(k \log k)})$ lower bound: easy reduction from $k \times k$ -CLIQUE.
 - For every non-edge (i, j) (i', j') of H, introduce a set containing the whole rows i and i' apart from (i, j) and (i', j').

$k \times k$ -Hitting Set

Input:A family \mathcal{F} of subsets of $[k] \times [k]$ Question:Is there a set X that contains exactly one vertex from
each row and has a nonempty intersection with every
set of \mathcal{F} ?

- $\mathcal{O}^*(2^{o(k \log k)})$ lower bound: easy reduction from $k \times k$ -CLIQUE.
 - For every non-edge (i, j) (i', j') of H, introduce a set containing the whole rows i and i' apart from (i, j) and (i', j').
- Same works for PERM $k \times k$ -HITTING SET and PERM $k \times k$ -CLIQUE.

• Seems that $k \times k$ -HITTING SET in full generality is not that useful.

- Seems that $k \times k$ -HITTING SET in full generality is not that useful.
- $k \times k$ -Hitting Set with thin sets

- Seems that $k \times k$ -HITTING SET in full generality is not that useful.
- $k \times k$ -Hitting Set with thin sets
 - Every set of ${\mathcal F}$ is required to contain at most one vertex from each row.

- Seems that $k \times k$ -HITTING SET in full generality is not that useful.
- $k \times k$ -Hitting Set with thin sets
 - Every set of ${\mathcal F}$ is required to contain at most one vertex from each row.
- One can show an \$\mathcal{O}^*(2^{o(k \log k)})\$ lower bound also for \$k \times k\$-HITTING SET WITH THIN SETS.

- Seems that $k \times k$ -HITTING SET in full generality is not that useful.
- $k \times k$ -Hitting Set with thin sets
 - Every set of ${\mathcal F}$ is required to contain at most one vertex from each row.
- One can show an \$\mathcal{O}^*(2^{o(k \log k)})\$ lower bound also for \$k \times k\$-HITTING SET WITH THIN SETS.
- Technical reduction with a pivot problem: exercises in the book.

- Seems that $k \times k$ -HITTING SET in full generality is not that useful.
- $k \times k$ -Hitting Set with thin sets
 - Every set of ${\mathcal F}$ is required to contain at most one vertex from each row.
- One can show an \$\mathcal{O}^*(2^{o(k \log k)})\$ lower bound also for \$k \times k\$-HITTING SET WITH THIN SETS.
- Technical reduction with a pivot problem: exercises in the book.
- Same holds for **PERMUTATION**....

Application: CLOSEST STRING

CLOSEST STRING

Input:	An alphabet Σ , strings x_1, x_2, \ldots, x_n over Σ ,
	each of length <i>L</i> , and an integer <i>d</i>
Question:	Is there a string $y \in \Sigma^L$ that has Hamming distance
	at most d to each x_i ?

Application: CLOSEST STRING

CLOSEST STRING

Input:	An alphabet Σ , strings x_1, x_2, \ldots, x_n over Σ ,
	each of length <i>L</i> , and an integer <i>d</i>
Question:	Is there a string $y \in \Sigma^L$ that has Hamming distance
	at most d to each x_i ?

• There are algorithms with running time $\mathcal{O}^*(d^d)$ and $\mathcal{O}^*(|\Sigma|^d)$.
Application: CLOSEST STRING

CLOSEST STRING

Input:	An alphabet Σ , strings x_1, x_2, \ldots, x_n over Σ ,
	each of length <i>L</i> , and an integer <i>d</i>
Question:	Is there a string $y \in \Sigma^L$ that has Hamming distance
	at most d to each x_i ?

- There are algorithms with running time $\mathcal{O}^*(d^d)$ and $\mathcal{O}^*(|\Sigma|^d)$.
- We now show that this is tight: Under ETH, there is neither O^{*}(2^{o(d log d)}) nor O^{*}(2^{o(d log |∑|)}) algorithm.

Application: CLOSEST STRING

CLOSEST STRING

Input:	An alphabet Σ , strings x_1, x_2, \ldots, x_n over Σ ,
	each of length <i>L</i> , and an integer <i>d</i>
Question:	Is there a string $y \in \Sigma^L$ that has Hamming distance
	at most d to each x_i ?

- There are algorithms with running time $\mathcal{O}^*(d^d)$ and $\mathcal{O}^*(|\Sigma|^d)$.
- We now show that this is tight: Under ETH, there is neither O^{*}(2^{o(d log d)}) nor O^{*}(2^{o(d log |Σ|)}) algorithm.
- Reduction from PERM $k \times k$ -HITTING SET WTS that gives an instance with L = k, d = k 1 and $|\Sigma| = k + 1$.

$$\Sigma = [k] \cup \{\bigstar\}$$

$$\Sigma = [k] \cup \{\bigstar\}$$

Create strings:

 $\boldsymbol{\Sigma} = [k] \cup \{\bigstar\}$

Create strings:

1	1111
2	2222
3	3333
4	4444
5	5555

 $\boldsymbol{\Sigma} = [k] \cup \{\bigstar\}$

Create strings:

	11111
	22222
	33333
	44444
	55555
0	142 ★ 5
Õ	3★3★1
Õ	11★43

 Suppose there is some string y at distance ≤ d = k − 1 from all the constructed strings.

- Suppose there is some string y at distance ≤ d = k − 1 from all the constructed strings.
- Eq: y shares at least one symbol with each constructed string.

- Suppose there is some string y at distance ≤ d = k − 1 from all the constructed strings.
- Eq: y shares at least one symbol with each constructed string.
- Sharing with strings of the form *iii* ... *ii* ⇒ y uses every symbol from [k] exactly once.

- Suppose there is some string y at distance ≤ d = k − 1 from all the constructed strings.
- Eq: y shares at least one symbol with each constructed string.
- Sharing with strings of the form *iii*...*ii* ⇒ y uses every symbol from [k] exactly once.
- In particular, y does not use ★, so it encodes a solution to PERM k × k-HITTING SET WTS.

- Suppose there is some string y at distance ≤ d = k − 1 from all the constructed strings.
- Eq: y shares at least one symbol with each constructed string.
- Sharing with strings of the form *iii*...*ii* ⇒ y uses every symbol from [k] exactly once.
- In particular, y does not use ★, so it encodes a solution to PERM k × k-HITTING SET WTS.
- y shares a symbol with x created for $X \Leftrightarrow$ the solution hits X

- Suppose there is some string y at distance ≤ d = k − 1 from all the constructed strings.
- Eq: y shares at least one symbol with each constructed string.
- Sharing with strings of the form *iii*...*ii* ⇒ y uses every symbol from [k] exactly once.
- In particular, y does not use ★, so it encodes a solution to PERM k × k-HITTING SET WTS.
- y shares a symbol with x created for $X \Leftrightarrow$ the solution hits X
- The second implication works the same.

- Suppose there is some string y at distance ≤ d = k − 1 from all the constructed strings.
- Eq: y shares at least one symbol with each constructed string.
- Sharing with strings of the form *iii*...*ii* ⇒ y uses every symbol from [k] exactly once.
- In particular, y does not use ★, so it encodes a solution to PERM k × k-HITTING SET WTS.
- y shares a symbol with x created for $X \Leftrightarrow$ the solution hits X
- The second implication works the same.
- Ex: What breaks if we start from $k \times k$ -HITTING SET WTS?

• Time $\mathcal{O}^*(2^{\mathcal{O}(t \log t)})$ appears naturally when DP on treewidth keeps partitions of the bag as states.

- Time \$\mathcal{O}^*(2^{\mathcal{O}(t \log t)})\$ appears naturally when DP on treewidth keeps partitions of the bag as states.
 - CYCLE PACKING: pack at least *r* cycles into the graph.

- Time \$\mathcal{O}^*(2^{\mathcal{O}(t \log t)})\$ appears naturally when DP on treewidth keeps partitions of the bag as states.
 - CYCLE PACKING: pack at least r cycles into the graph.
 - VERTEX DISJOINT PATHS: find k vertex-disjoint paths between given pairs of terminals $(s_1, t_1), (s_2, t_2), \dots, (s_k, t_k)$

- Time \$\mathcal{O}^*(2^{\mathcal{O}(t \log t)})\$ appears naturally when DP on treewidth keeps partitions of the bag as states.
 - CYCLE PACKING: pack at least r cycles into the graph.
 - VERTEX DISJOINT PATHS: find k vertex-disjoint paths between given pairs of terminals $(s_1, t_1), (s_2, t_2), \dots, (s_k, t_k)$
- Both these problems do not admit O^{*}(2^{o(t log t)}) algorithms when parameterized by treewidth, unless ETH fails.

- Time \$\mathcal{O}^*(2^{\mathcal{O}(t \log t)})\$ appears naturally when DP on treewidth keeps partitions of the bag as states.
 - CYCLE PACKING: pack at least r cycles into the graph.
 - VERTEX DISJOINT PATHS: find k vertex-disjoint paths between given pairs of terminals $(s_1, t_1), (s_2, t_2), \dots, (s_k, t_k)$
- Both these problems do not admit \$\mathcal{O}^*(2^{o(t \log t)})\$ algorithms when parameterized by treewidth, unless ETH fails.
- Methodology similar to what Daniel will talk about during the lecture on SETH.

• **Previous lecture**: typical lower bounds of the form $\mathcal{O}^*(2^{o(\sqrt{k})})$ for problems on planar graphs.

- Previous lecture: typical lower bounds of the form O^{*}(2^{o(√k)}) for problems on planar graphs.
- $\bullet\,$ On planar graphs, many more problems are FPT, but there are also $W[1]\mbox{-hard}$ ones.

- Previous lecture: typical lower bounds of the form O^{*}(2^{o(√k)}) for problems on planar graphs.
- $\bullet\,$ On planar graphs, many more problems are FPT, but there are also $W[1]\mbox{-hard}$ ones.
- Typical behaviour:

- Previous lecture: typical lower bounds of the form O^{*}(2^{o(√k)}) for problems on planar graphs.
- On planar graphs, many more problems are FPT, but there are also $\mathrm{W}[1]\text{-}\mathsf{hard}$ ones.
- Typical behaviour:
 - **Upper bound**: an $n^{\mathcal{O}(\sqrt{k})}$ algorithm

- Previous lecture: typical lower bounds of the form O^{*}(2^{o(√k)}) for problems on planar graphs.
- $\bullet\,$ On planar graphs, many more problems are FPT, but there are also $W[1]\mbox{-hard}$ ones.
- Typical behaviour:
 - **Upper bound**: an $n^{\mathcal{O}(\sqrt{k})}$ algorithm
 - Lower bound: no f(k) ⋅ n^{o(√k)} algorithm for any computable f, unless ETH fails.

- Previous lecture: typical lower bounds of the form O^{*}(2^{o(√k)}) for problems on planar graphs.
- $\bullet\,$ On planar graphs, many more problems are FPT, but there are also $W[1]\mbox{-hard}$ ones.
- Typical behaviour:
 - Upper bound: an $n^{\mathcal{O}(\sqrt{k})}$ algorithm
 - Lower bound: no f(k) ⋅ n^{o(√k)} algorithm for any computable f, unless ETH fails.
- Now: a framework for proving such results.

- Previous lecture: typical lower bounds of the form O^{*}(2^{o(√k)}) for problems on planar graphs.
- $\bullet\,$ On planar graphs, many more problems are FPT, but there are also $W[1]\mbox{-hard}$ ones.
- Typical behaviour:
 - Upper bound: an $n^{\mathcal{O}(\sqrt{k})}$ algorithm
 - Lower bound: no f(k) · n^{o(√k)} algorithm for any computable f, unless ETH fails.
- Now: a framework for proving such results.
- **Recall**: under ETH, CLIQUE does not have an $f(k) \cdot n^{o(k)}$ algorithm for any computable f.

GRID TILING

GRID TILING

Input:	Integers k, n and sets $S_{i,j} \subseteq [n] \times [n]$
	for $(i,j) \in [k] \times [k]$.
Question:	Can one pick $s_{i,j} \in S_{i,j}$ for each $(i,j) \in [k] \times [k]$ s.t.
	(a) If $s_{i,j} = (a, b)$ and $s_{i+1,j} = (a', b')$, then $a = a'$.
	(b) If $s_{i,j} = (a, b)$ and $s_{i,j+1} = (a', b')$, then $b = b'$.

On a picture

$\begin{array}{c} S_{1,1}:\\ \hline (1,1)\\ \hline (3,1)\\ \hline (2,4) \end{array}$	$S_{1,2}:$ (5,1) (1,4) (5,3)	$S_{1,3}: (1,1) (2,4) (3,3)$
$S_{2,1}:$ (2,2) (1,4)	$S_{2,2}$: (3,1) (1,2)	$S_{2,3}$: (2,2) (2,3)
$\begin{array}{c} S_{3,1}:\\ \hline (1,3)\\ \hline (2,3)\\ \hline (3,3) \end{array}$	$\begin{array}{c} S_{3,2}:\\ \hline (1,1)\\ \hline (1,3) \end{array}$	$S_{3,3}:$ (2,3) (5,3)

Michał Pilipczuk

On a picture

$S_{1,1}:$ (1,1) (3,1) (2,4)	$S_{1,2}$: (5,1) (1,4) (5,3)	$S_{1,3}:$ (1,1) (2,4) (3,3)
$S_{2,1}$: (2,2) (1,4)	$S_{2,2}$: (3,1) (1,2)	S _{2,3} : (2,2) (2,3)
$S_{3,1}:$ (1,3) (2,3) (3,3)	$S_{3,2}: (1,1) (1,3)$	S _{3,3} : (2,3) (5,3)

Michał Pilipczuk

• Claim: GRID TILING does not have an $f(k) \cdot n^{o(k)}$ algorithm for any computable f, unless ETH fails.

- Claim: GRID TILING does not have an $f(k) \cdot n^{o(k)}$ algorithm for any computable f, unless ETH fails.
- Take an instance (G, k) of CLIQUE, where V(G) = [n].

- Claim: GRID TILING does not have an $f(k) \cdot n^{o(k)}$ algorithm for any computable f, unless ETH fails.
- Take an instance (G, k) of CLIQUE, where V(G) = [n].
 - For $1 \le i \le k$, put $S_{i,i} = \{(a, a) : 1 \le a \le n\}$.

- Claim: GRID TILING does not have an $f(k) \cdot n^{o(k)}$ algorithm for any computable f, unless ETH fails.
- Take an instance (G, k) of CLIQUE, where V(G) = [n].
 - For $1 \le i \le k$, put $S_{i,i} = \{(a, a) \colon 1 \le a \le n\}$.
 - For $1 \le i, j \le k$, $i \ne j$, put $S_{i,j} = \{(a, b): a \ne b \text{ and } ab \in E(G)\}.$

- Claim: GRID TILING does not have an $f(k) \cdot n^{o(k)}$ algorithm for any computable f, unless ETH fails.
- Take an instance (G, k) of CLIQUE, where V(G) = [n].
 - For $1 \le i \le k$, put $S_{i,i} = \{(a, a) : 1 \le a \le n\}$.
 - For $1 \le i, j \le k, i \ne j$, put $S_{i,j} = \{(a, b) : a \ne b \text{ and } ab \in E(G)\}.$
- Cells on diagonal ensure that vertices chosen on rows are the same as vertices chosen on columns.

- Claim: GRID TILING does not have an $f(k) \cdot n^{o(k)}$ algorithm for any computable f, unless ETH fails.
- Take an instance (G, k) of CLIQUE, where V(G) = [n].

• For
$$1 \le i \le k$$
, put $S_{i,i} = \{(a, a) \colon 1 \le a \le n\}$.

• For
$$1 \le i, j \le k$$
, $i \ne j$, put
 $S_{i,j} = \{(a, b) : a \ne b \text{ and } ab \in E(G)\}.$

- Cells on diagonal ensure that vertices chosen on rows are the same as vertices chosen on columns.
- Cell (i, j) for i ≠ j ensures that the i-th and the j-th chosen vertex are distinct and adjacent.

- Claim: GRID TILING does not have an $f(k) \cdot n^{o(k)}$ algorithm for any computable f, unless ETH fails.
- Take an instance (G, k) of CLIQUE, where V(G) = [n].

• For
$$1 \le i \le k$$
, put $S_{i,i} = \{(a, a) \colon 1 \le a \le n\}$.

• For
$$1 \le i, j \le k$$
, $i \ne j$, put
 $S_{i,j} = \{(a, b) : a \ne b \text{ and } ab \in E(G)\}.$

- Cells on diagonal ensure that vertices chosen on rows are the same as vertices chosen on columns.
- Cell (i, j) for i ≠ j ensures that the i-th and the j-th chosen vertex are distinct and adjacent.
- Hence, choosing vertices on the rows/columns models choosing a *k*-clique in *G*.
• A grid has a planar structure that a clique is missing.

- A grid has a planar structure that a clique is missing.
- Generic reduction from GRID TILING:

- A grid has a planar structure that a clique is missing.
- Generic reduction from GRID TILING:
 - Model each cell with a planar 1-in-*n* gadget.

- A grid has a planar structure that a clique is missing.
- Generic reduction from GRID TILING:
 - Model each cell with a planar 1-in-*n* gadget.
 - Wire the neighboring cells to encode the GRID TILING behaviour.

- A grid has a planar structure that a clique is missing.
- Generic reduction from GRID TILING:
 - Model each cell with a planar 1-in-*n* gadget.
 - Wire the neighboring cells to encode the GRID TILING behaviour.
 - If each cell contributes $\mathcal{O}(1)$ to the parameter, then the final parameter is $\mathcal{O}(k^2)$.

- A grid has a planar structure that a clique is missing.
- Generic reduction from GRID TILING:
 - Model each cell with a planar 1-in-*n* gadget.
 - Wire the neighboring cells to encode the GRID TILING behaviour.
 - If each cell contributes $\mathcal{O}(1)$ to the parameter, then the final parameter is $\mathcal{O}(k^2)$.
 - This gives $f(k) \cdot n^{o(\sqrt{k})}$ lower bound under ETH.

- A grid has a planar structure that a clique is missing.
- Generic reduction from GRID TILING:
 - Model each cell with a planar 1-in-*n* gadget.
 - Wire the neighboring cells to encode the GRID TILING behaviour.
 - If each cell contributes $\mathcal{O}(1)$ to the parameter, then the final parameter is $\mathcal{O}(k^2)$.
 - This gives $f(k) \cdot n^{o(\sqrt{k})}$ lower bound under ETH.
- Equality in GRID TILING is not always convenient. For packing/domination, an inequality would be nicer.

Grid Tiling with \leq

GRID TILING WITH \leq

Input:	Integers k, n and sets $S_{i,j} \subseteq [n] \times [n]$		
	for $(i,j) \in [k] \times [k]$.		
Question:	Can one pick $s_{i,j} \in S_{i,j}$ for each $(i,j) \in [k] \times [k]$ s.t.		
	(a) If $s_{i,j} = (a, b)$ and $s_{i+1,j} = (a', b')$, then $a \le a'$.		
	(b) If $s_{i,j} = (a, b)$ and $s_{i,j+1} = (a', b')$, then $b \le b'$.		

On a picture

$S_{1,1}:$ (1,1) (3,1) (2,4)	$S_{1,2}:$ (5,1) (1,4) (5,3)	$S_{1,3}:$ (1,1) (2,5) (3,3)
$S_{2,1}$: (2,2) (1,4)	$S_{2,2}$: (3,1) (2,2)	S _{2,3} : (3,2) (2,3)
$S_{3,1}:$ (1,3) (2,3) (3,3)	$S_{3,2}:$ (1,1) (2,3)	$S_{3,3}:$ (5,4) (3,4)

Michał Pilipczuk

uk ETH2

• GRID TILING WITH \leq : also no $f(k) \cdot n^{o(k)}$ algorithm for any computable f under ETH.

- GRID TILING WITH \leq : also no $f(k) \cdot n^{o(k)}$ algorithm for any computable f under ETH.
- Technical reduction from standard GRID TILING.

- GRID TILING WITH \leq : also no $f(k) \cdot n^{o(k)}$ algorithm for any computable f under ETH.
- Technical reduction from standard GRID TILING.
- Idea: replace each row/column with 2 rows/columns. Whenever in the first row there is some a, on the second there is M a. Hence the rows work against each other, implying equality.

- GRID TILING WITH ≤: also no f(k) · n^{o(k)} algorithm for any computable f under ETH.
- Technical reduction from standard GRID TILING.
- Idea: replace each row/column with 2 rows/columns. Whenever in the first row there is some a, on the second there is M a. Hence the rows work against each other, implying equality.
- Actually we need 4 rows/columns for synchronization, so each cell is replaced with 16 cells. Quite some details, see the book.

Application 1: *d*-SCATTERED SET

d-Scattered Set

Input:Graph G, integers k and dQuestion:Does there exist a set of k vertices in G that
are pairwise at distance at least d from each other?

On d-Scattered Set

\bullet 2-Scattered Set=Independent Set

On d-Scattered Set

- 2-Scattered Set=Independent Set
- We focus on PLANAR *d*-SCATTERED SET.

On d-SCATTERED SET

- 2-Scattered Set=Independent Set
- We focus on Planar *d*-Scattered Set.
- When d is constant, then $\mathcal{O}^{\star}(2^{\mathcal{O}(\sqrt{k})})$ algorithm.

On d-SCATTERED SET

- \bullet 2-Scattered Set=Independent Set
- We focus on PLANAR *d*-SCATTERED SET.
- When d is constant, then $\mathcal{O}^{\star}(2^{\mathcal{O}(\sqrt{k})})$ algorithm.
- When d is a parameter, then FPT par. by k + d.

On d-Scattered Set

- 2-Scattered Set=Independent Set
- We focus on PLANAR *d*-SCATTERED SET.
- When d is constant, then $\mathcal{O}^{\star}(2^{\mathcal{O}(\sqrt{k})})$ algorithm.
- When d is a parameter, then FPT par. by k + d.
- When d is unbounded, then there is an $n^{\mathcal{O}(\sqrt{k})}$ -time algorithm.

On d-Scattered Set

- 2-Scattered Set=Independent Set
- We focus on PLANAR *d*-SCATTERED SET.
- When d is constant, then $\mathcal{O}^{\star}(2^{\mathcal{O}(\sqrt{k})})$ algorithm.
- When d is a parameter, then FPT par. by k + d.
- When d is unbounded, then there is an $n^{\mathcal{O}(\sqrt{k})}$ -time algorithm.
- Now: By a reduction from GRID TILING WITH ≤, we show that the problem is W[1]-hard and does not admit an f(k) · n^{o(√k)} algorithm under ETH.

Reduction for PLANAR d-SCATTERED SET

$S_{1,1}:$ (1,1) (3,1) (2,4)	$S_{1,2}:$ (5,1) (1,4) (5,3)	$S_{1,3}:$ (1,1) (2,5) (3,3)
$S_{2,1}$: (2,2) (1,4)	$S_{2,2}$: (3,1) (2,2)	$S_{2,3}$: (3,2) (2,3)
$\begin{array}{c} S_{3,1}:\\ \hline (1,3)\\ \hline (2,3)\\ \hline (3,3) \end{array}$	$S_{3,2}$: (1,1) (2,3)	$S_{3,3}:$ (5,4) (3,4)

Michał Pilipczuk

Reduction for PLANAR d-SCATTERED SET

Reduction for PLANAR d-SCATTERED SET

• We asked for a scattered set of size k^2 , so the parameter blow-up is quadratic.

- We asked for a scattered set of size k^2 , so the parameter blow-up is quadratic.
- This gives an $f(k) \cdot n^{o(\sqrt{k})}$ lower bound for PLANAR *d*-SCATTERED SET.

- We asked for a scattered set of size k^2 , so the parameter blow-up is quadratic.
- This gives an $f(k) \cdot n^{o(\sqrt{k})}$ lower bound for PLANAR d-SCATTERED SET.
- **Upper bound**: DP on possible separators of the graph of interaction between vertices of the solution.

- We asked for a scattered set of size k^2 , so the parameter blow-up is quadratic.
- This gives an $f(k) \cdot n^{o(\sqrt{k})}$ lower bound for PLANAR d-SCATTERED SET.
- **Upper bound**: DP on possible separators of the graph of interaction between vertices of the solution.
- This graph is planar and hence has treewidth $\mathcal{O}(\sqrt{k})$.

- We asked for a scattered set of size k^2 , so the parameter blow-up is quadratic.
- This gives an $f(k) \cdot n^{o(\sqrt{k})}$ lower bound for PLANAR d-SCATTERED SET.
- **Upper bound**: DP on possible separators of the graph of interaction between vertices of the solution.
- This graph is planar and hence has treewidth $\mathcal{O}(\sqrt{k})$.
- Plays well with the lower bound: the grid has asymptotically the worst possible treewidth.

Application 2: UNIT DISK INDEPENDENT SET

UNIT DISK INDEPENDENT SET

Input: A set of open disks of diameter 1 on the plane, integer k

Question: Can one select *k* pairwise disjoint disks?

Application 2: UNIT DISK INDEPENDENT SET

UNIT DISK INDEPENDENT SET

Input: A set of open disks of diameter 1 on the plane, integer k

Question: Can one select *k* pairwise disjoint disks?

• (Alber, Fiala) UNIT DISK INDEPENDENT SET can be solved in time $n^{\mathcal{O}(\sqrt{k})}$.

Application 2: UNIT DISK INDEPENDENT SET

UNIT DISK INDEPENDENT SET

Input: A set of open disks of diameter 1 on the plane, integer k

Question: Can one select k pairwise disjoint disks?

- (Alber, Fiala) UNIT DISK INDEPENDENT SET can be solved in time $n^{\mathcal{O}(\sqrt{k})}$.
- Now: Again, by a reduction from GRID TILING WITH ≤, we show that the problem is W[1]-hard and does not admit an f(k) · n^{o(√k)} algorithm under ETH.

Reduction for UNIT DISK INDEPENDENT SET

Wrap-up

• Pick $\varepsilon = 1/n^{10}$.

- Pick $\varepsilon = 1/n^{10}$.
- For $(a, b) \in S_{i,j}$, put disk with centre in $(i + a\varepsilon, j + b\varepsilon)$.

- Pick $\varepsilon = 1/n^{10}$.
- For $(a, b) \in S_{i,j}$, put disk with centre in $(i + a\varepsilon, j + b\varepsilon)$.
- It is easy to see that disks for (i, j) and (i + 1, j) are disjoint iff $a \le a'$.

- Pick $\varepsilon = 1/n^{10}$.
- For $(a, b) \in S_{i,j}$, put disk with centre in $(i + a\varepsilon, j + b\varepsilon)$.
- It is easy to see that disks for (i, j) and (i + 1, j) are disjoint iff $a \leq a'$.
 - Change of length from shifting by $n\varepsilon$ vertically will not compensate for change of length from shifting by ε horizontally.
- Pick $\varepsilon = 1/n^{10}$.
- For $(a, b) \in S_{i,j}$, put disk with centre in $(i + a\varepsilon, j + b\varepsilon)$.
- It is easy to see that disks for (i, j) and (i + 1, j) are disjoint iff a ≤ a'.
 - Change of length from shifting by $n\varepsilon$ vertically will not compensate for change of length from shifting by ε horizontally.
- \bullet Hence the choice of disks models the $\rm GRID~TILING~WITH \leq$ instance.

- Pick $\varepsilon = 1/n^{10}$.
- For $(a, b) \in S_{i,j}$, put disk with centre in $(i + a\varepsilon, j + b\varepsilon)$.
- It is easy to see that disks for (i, j) and (i + 1, j) are disjoint iff a ≤ a'.
 - Change of length from shifting by $n\varepsilon$ vertically will not compensate for change of length from shifting by ε horizontally.
- Hence the choice of disks models the $\rm GRID~TILING~WITH \leq$ instance.
- As we ask for k^2 disks, the lower bound follows.

• Hardness of 3SAT turned out to be a very robust assumption for proving lower bounds on time complexity.

- Hardness of 3SAT turned out to be a very robust assumption for proving lower bounds on time complexity.
- Very different lower bounds:

- Hardness of 3SAT turned out to be a very robust assumption for proving lower bounds on time complexity.
- Very different lower bounds:
 - $\mathcal{O}^{\star}(2^{o(n)})$, $\mathcal{O}^{\star}(2^{o(\sqrt{n})})$ for classical complexity;

- Hardness of 3SAT turned out to be a very robust assumption for proving lower bounds on time complexity.
- Very different lower bounds:
 - $\mathcal{O}^{\star}(2^{o(n)})$, $\mathcal{O}^{\star}(2^{o(\sqrt{n})})$ for classical complexity;
 - O^{*}(2^{o(k)}), O^{*}(2^{o(√k)}), O^{*}(2^{o(k log k)}), O^{*}(2^{2^{o(k)}}) for FPT problems;

- Hardness of 3SAT turned out to be a very robust assumption for proving lower bounds on time complexity.
- Very different lower bounds:
 - $\mathcal{O}^{\star}(2^{o(n)})$, $\mathcal{O}^{\star}(2^{o(\sqrt{n})})$ for classical complexity;
 - $\mathcal{O}^{\star}(2^{o(k)})$, $\mathcal{O}^{\star}(2^{o(\sqrt{k})})$, $\mathcal{O}^{\star}(2^{o(k \log k)})$, $\mathcal{O}^{\star}(2^{2^{o(k)}})$ for FPT problems;
 - $f(k) \cdot n^{o(k)}$ and $f(k) \cdot n^{o(\sqrt{k})}$ for W[1]-hard problems;

- Hardness of 3SAT turned out to be a very robust assumption for proving lower bounds on time complexity.
- Very different lower bounds:
 - $\mathcal{O}^{\star}(2^{o(n)})$, $\mathcal{O}^{\star}(2^{o(\sqrt{n})})$ for classical complexity;
 - $\mathcal{O}^{\star}(2^{o(k)}), \mathcal{O}^{\star}(2^{o(\sqrt{k})}), \mathcal{O}^{\star}(2^{o(k \log k)}), \mathcal{O}^{\star}(2^{2^{o(k)}})$ for FPT problems;
 - $f(k) \cdot n^{o(k)}$ and $f(k) \cdot n^{o(\sqrt{k})}$ for W[1]-hard problems;
 - many others that we did not mention.

- Hardness of 3SAT turned out to be a very robust assumption for proving lower bounds on time complexity.
- Very different lower bounds:
 - $\mathcal{O}^{\star}(2^{o(n)})$, $\mathcal{O}^{\star}(2^{o(\sqrt{n})})$ for classical complexity;
 - O^{*}(2^{o(k)}), O^{*}(2^{o(√k)}), O^{*}(2^{o(k log k)}), O^{*}(2^{2^{o(k)}}) for FPT problems;
 - $f(k) \cdot n^{o(k)}$ and $f(k) \cdot n^{o(\sqrt{k})}$ for W[1]-hard problems;
 - many others that we did not mention.
- **Optimality program**: understand the precise complexity of the problem by providing matching upper and lower bounds.

Exercises 14.5-14.9, 14.13