
Lower bounds based on ETH
Part 2

Micha l Pilipczuk

Institutt for Informatikk, Universitetet i Bergen

August 21st, 2014

Micha l Pilipczuk ETH2 1/38

Previous lecture

ETH: 3SAT requires O?(2cn) time for some c > 0.

Sparsification Lemma: 3SAT requires O?(2c(n+m)) time for
some c > 0. No 2o(n+m) algorithm.

Corollary: For a number of problems, exact and parameterized
algorithms cannot achieve subexponential time.

Corollary: No f (k) · no(k) algorithm for Clique under ETH, for
any computable f .

Micha l Pilipczuk ETH2 2/38

Previous lecture

ETH: 3SAT requires O?(2cn) time for some c > 0.

Sparsification Lemma: 3SAT requires O?(2c(n+m)) time for
some c > 0. No 2o(n+m) algorithm.

Corollary: For a number of problems, exact and parameterized
algorithms cannot achieve subexponential time.

Corollary: No f (k) · no(k) algorithm for Clique under ETH, for
any computable f .

Micha l Pilipczuk ETH2 2/38

Previous lecture

ETH: 3SAT requires O?(2cn) time for some c > 0.

Sparsification Lemma: 3SAT requires O?(2c(n+m)) time for
some c > 0. No 2o(n+m) algorithm.

Corollary: For a number of problems, exact and parameterized
algorithms cannot achieve subexponential time.

Corollary: No f (k) · no(k) algorithm for Clique under ETH, for
any computable f .

Micha l Pilipczuk ETH2 2/38

Previous lecture

ETH: 3SAT requires O?(2cn) time for some c > 0.

Sparsification Lemma: 3SAT requires O?(2c(n+m)) time for
some c > 0. No 2o(n+m) algorithm.

Corollary: For a number of problems, exact and parameterized
algorithms cannot achieve subexponential time.

Corollary: No f (k) · no(k) algorithm for Clique under ETH, for
any computable f .

Micha l Pilipczuk ETH2 2/38

This lecture

Show more exotic lower bounds under ETH.

Slightly super-exponential:
lower bounds excluding O?(2o(k log k)) algorithms.

Hardness for planar problems:

Last lecture: O?(2
√
k) lower bounds for FPT problems.

This lecture: f (k) · no(
√
k) lower bounds for W[1]-hard problems.

Also methodology for proving W[1]-hardness of planar problems.

Micha l Pilipczuk ETH2 3/38

This lecture

Show more exotic lower bounds under ETH.

Slightly super-exponential:
lower bounds excluding O?(2o(k log k)) algorithms.

Hardness for planar problems:

Last lecture: O?(2
√
k) lower bounds for FPT problems.

This lecture: f (k) · no(
√
k) lower bounds for W[1]-hard problems.

Also methodology for proving W[1]-hardness of planar problems.

Micha l Pilipczuk ETH2 3/38

This lecture

Show more exotic lower bounds under ETH.

Slightly super-exponential:
lower bounds excluding O?(2o(k log k)) algorithms.

Hardness for planar problems:

Last lecture: O?(2
√
k) lower bounds for FPT problems.

This lecture: f (k) · no(
√
k) lower bounds for W[1]-hard problems.

Also methodology for proving W[1]-hardness of planar problems.

Micha l Pilipczuk ETH2 3/38

This lecture

Show more exotic lower bounds under ETH.

Slightly super-exponential:
lower bounds excluding O?(2o(k log k)) algorithms.

Hardness for planar problems:

Last lecture: O?(2
√
k) lower bounds for FPT problems.

This lecture: f (k) · no(
√
k) lower bounds for W[1]-hard problems.

Also methodology for proving W[1]-hardness of planar problems.

Micha l Pilipczuk ETH2 3/38

This lecture

Show more exotic lower bounds under ETH.

Slightly super-exponential:
lower bounds excluding O?(2o(k log k)) algorithms.

Hardness for planar problems:

Last lecture: O?(2
√
k) lower bounds for FPT problems.

This lecture: f (k) · no(
√
k) lower bounds for W[1]-hard problems.

Also methodology for proving W[1]-hardness of planar problems.

Micha l Pilipczuk ETH2 3/38

This lecture

Show more exotic lower bounds under ETH.

Slightly super-exponential:
lower bounds excluding O?(2o(k log k)) algorithms.

Hardness for planar problems:

Last lecture: O?(2
√
k) lower bounds for FPT problems.

This lecture: f (k) · no(
√
k) lower bounds for W[1]-hard problems.

Also methodology for proving W[1]-hardness of planar problems.

Micha l Pilipczuk ETH2 3/38

Slightly super-exponential time

Slightly super-exponential = O?(2O(k log k)) = O?(kO(k))

Appears naturally:

(a) A branching procedure branches O(k) times, each time
choosing one of poly(k) options.

(b) A treewidth DP has partitions of the bag as the states.

We focus on (a), but lower bounds for (b) are also possible.

Goal: construct a methodology for showing that O?(2O(k log k))
cannot be improved.

Micha l Pilipczuk ETH2 4/38

Slightly super-exponential time

Slightly super-exponential = O?(2O(k log k)) = O?(kO(k))

Appears naturally:

(a) A branching procedure branches O(k) times, each time
choosing one of poly(k) options.

(b) A treewidth DP has partitions of the bag as the states.

We focus on (a), but lower bounds for (b) are also possible.

Goal: construct a methodology for showing that O?(2O(k log k))
cannot be improved.

Micha l Pilipczuk ETH2 4/38

Slightly super-exponential time

Slightly super-exponential = O?(2O(k log k)) = O?(kO(k))

Appears naturally:

(a) A branching procedure branches O(k) times, each time
choosing one of poly(k) options.

(b) A treewidth DP has partitions of the bag as the states.

We focus on (a), but lower bounds for (b) are also possible.

Goal: construct a methodology for showing that O?(2O(k log k))
cannot be improved.

Micha l Pilipczuk ETH2 4/38

Slightly super-exponential time

Slightly super-exponential = O?(2O(k log k)) = O?(kO(k))

Appears naturally:

(a) A branching procedure branches O(k) times, each time
choosing one of poly(k) options.

(b) A treewidth DP has partitions of the bag as the states.

We focus on (a), but lower bounds for (b) are also possible.

Goal: construct a methodology for showing that O?(2O(k log k))
cannot be improved.

Micha l Pilipczuk ETH2 4/38

Slightly super-exponential time

Slightly super-exponential = O?(2O(k log k)) = O?(kO(k))

Appears naturally:

(a) A branching procedure branches O(k) times, each time
choosing one of poly(k) options.

(b) A treewidth DP has partitions of the bag as the states.

We focus on (a), but lower bounds for (b) are also possible.

Goal: construct a methodology for showing that O?(2O(k log k))
cannot be improved.

Micha l Pilipczuk ETH2 4/38

Slightly super-exponential time

Slightly super-exponential = O?(2O(k log k)) = O?(kO(k))

Appears naturally:

(a) A branching procedure branches O(k) times, each time
choosing one of poly(k) options.

(b) A treewidth DP has partitions of the bag as the states.

We focus on (a), but lower bounds for (b) are also possible.

Goal: construct a methodology for showing that O?(2O(k log k))
cannot be improved.

Micha l Pilipczuk ETH2 4/38

Archetypical problem

We need an archetypical problem for this running time.

Intuition: k independent choices out of k options.

k × k-Clique

Input: A graph H on vertex set [k]× [k]
Question: Is there a k-clique in H that contains exactly one

vertex from each row?

[k] = {1, 2, . . . , k}.

Micha l Pilipczuk ETH2 5/38

Archetypical problem

We need an archetypical problem for this running time.

Intuition: k independent choices out of k options.

k × k-Clique

Input: A graph H on vertex set [k]× [k]
Question: Is there a k-clique in H that contains exactly one

vertex from each row?

[k] = {1, 2, . . . , k}.

Micha l Pilipczuk ETH2 5/38

Archetypical problem

We need an archetypical problem for this running time.

Intuition: k independent choices out of k options.

k × k-Clique

Input: A graph H on vertex set [k]× [k]
Question: Is there a k-clique in H that contains exactly one

vertex from each row?

[k] = {1, 2, . . . , k}.

Micha l Pilipczuk ETH2 5/38

Archetypical problem

We need an archetypical problem for this running time.

Intuition: k independent choices out of k options.

k × k-Clique

Input: A graph H on vertex set [k]× [k]
Question: Is there a k-clique in H that contains exactly one

vertex from each row?

[k] = {1, 2, . . . , k}.

Micha l Pilipczuk ETH2 5/38

On a picture

Micha l Pilipczuk ETH2 6/38

On a picture

Micha l Pilipczuk ETH2 6/38

On k × k-Clique

Note: the input to the problem is of size O(k4).

Trivial O?(kk) algorithm: verify all the choices.

Intuition: k × k-Clique models k independent 1-in-k choices
in the same manner as (Multicolored) Clique models k
independent 1-in-n choices.

Hence, we should imitate the lower bound for Clique from the
previous lecture.

Now: k × k-Clique does not admit an O?(2o(k log k)) algorithm
unless ETH fails.

Micha l Pilipczuk ETH2 7/38

On k × k-Clique

Note: the input to the problem is of size O(k4).

Trivial O?(kk) algorithm: verify all the choices.

Intuition: k × k-Clique models k independent 1-in-k choices
in the same manner as (Multicolored) Clique models k
independent 1-in-n choices.

Hence, we should imitate the lower bound for Clique from the
previous lecture.

Now: k × k-Clique does not admit an O?(2o(k log k)) algorithm
unless ETH fails.

Micha l Pilipczuk ETH2 7/38

On k × k-Clique

Note: the input to the problem is of size O(k4).

Trivial O?(kk) algorithm: verify all the choices.

Intuition: k × k-Clique models k independent 1-in-k choices
in the same manner as (Multicolored) Clique models k
independent 1-in-n choices.

Hence, we should imitate the lower bound for Clique from the
previous lecture.

Now: k × k-Clique does not admit an O?(2o(k log k)) algorithm
unless ETH fails.

Micha l Pilipczuk ETH2 7/38

On k × k-Clique

Note: the input to the problem is of size O(k4).

Trivial O?(kk) algorithm: verify all the choices.

Intuition: k × k-Clique models k independent 1-in-k choices
in the same manner as (Multicolored) Clique models k
independent 1-in-n choices.

Hence, we should imitate the lower bound for Clique from the
previous lecture.

Now: k × k-Clique does not admit an O?(2o(k log k)) algorithm
unless ETH fails.

Micha l Pilipczuk ETH2 7/38

On k × k-Clique

Note: the input to the problem is of size O(k4).

Trivial O?(kk) algorithm: verify all the choices.

Intuition: k × k-Clique models k independent 1-in-k choices
in the same manner as (Multicolored) Clique models k
independent 1-in-n choices.

Hence, we should imitate the lower bound for Clique from the
previous lecture.

Now: k × k-Clique does not admit an O?(2o(k log k)) algorithm
unless ETH fails.

Micha l Pilipczuk ETH2 7/38

Lower bound for k × k-Clique

Starting point: 3-Coloring on an N-vertex graph does not
admit a 2o(N) algorithm.

Take an instance G of 3-Coloring.

Divide the vertices into k := 2N
log3 N

groups, each of size log3 N
2

.

For each of the groups list all the 3-colorings.

There is 3
log3 N

2 =
√
N ≤ k of them.

Micha l Pilipczuk ETH2 8/38

Lower bound for k × k-Clique

Starting point: 3-Coloring on an N-vertex graph does not
admit a 2o(N) algorithm.

Take an instance G of 3-Coloring.

Divide the vertices into k := 2N
log3 N

groups, each of size log3 N
2

.

For each of the groups list all the 3-colorings.

There is 3
log3 N

2 =
√
N ≤ k of them.

Micha l Pilipczuk ETH2 8/38

Lower bound for k × k-Clique

Starting point: 3-Coloring on an N-vertex graph does not
admit a 2o(N) algorithm.

Take an instance G of 3-Coloring.

Divide the vertices into k := 2N
log3 N

groups, each of size log3 N
2

.

For each of the groups list all the 3-colorings.

There is 3
log3 N

2 =
√
N ≤ k of them.

Micha l Pilipczuk ETH2 8/38

Lower bound for k × k-Clique

Starting point: 3-Coloring on an N-vertex graph does not
admit a 2o(N) algorithm.

Take an instance G of 3-Coloring.

Divide the vertices into k := 2N
log3 N

groups, each of size log3 N
2

.

For each of the groups list all the 3-colorings.

There is 3
log3 N

2 =
√
N ≤ k of them.

Micha l Pilipczuk ETH2 8/38

Lower bound for k × k-Clique

Starting point: 3-Coloring on an N-vertex graph does not
admit a 2o(N) algorithm.

Take an instance G of 3-Coloring.

Divide the vertices into k := 2N
log3 N

groups, each of size log3 N
2

.

For each of the groups list all the 3-colorings.

There is 3
log3 N

2 =
√
N ≤ k of them.

Micha l Pilipczuk ETH2 8/38

Lower bound for k × k-Clique

For i ∈ [k] and j ∈ [
√
N], vertex (i , j) represents the j-th

coloring of the i -th group.

For i 6= i ′, put an edge between (i , j) and (i ′, j ′) if respective
colorings together form a proper coloring of the union of the
groups i and i ′.

Note: colorings that are not proper already on their own groups
will become isolated vertices.

Finally, fill the rows with isolated vertices up to size k .

Micha l Pilipczuk ETH2 9/38

Lower bound for k × k-Clique

For i ∈ [k] and j ∈ [
√
N], vertex (i , j) represents the j-th

coloring of the i -th group.

For i 6= i ′, put an edge between (i , j) and (i ′, j ′) if respective
colorings together form a proper coloring of the union of the
groups i and i ′.

Note: colorings that are not proper already on their own groups
will become isolated vertices.

Finally, fill the rows with isolated vertices up to size k .

Micha l Pilipczuk ETH2 9/38

Lower bound for k × k-Clique

For i ∈ [k] and j ∈ [
√
N], vertex (i , j) represents the j-th

coloring of the i -th group.

For i 6= i ′, put an edge between (i , j) and (i ′, j ′) if respective
colorings together form a proper coloring of the union of the
groups i and i ′.

Note: colorings that are not proper already on their own groups
will become isolated vertices.

Finally, fill the rows with isolated vertices up to size k .

Micha l Pilipczuk ETH2 9/38

Lower bound for k × k-Clique

For i ∈ [k] and j ∈ [
√
N], vertex (i , j) represents the j-th

coloring of the i -th group.

For i 6= i ′, put an edge between (i , j) and (i ′, j ′) if respective
colorings together form a proper coloring of the union of the
groups i and i ′.

Note: colorings that are not proper already on their own groups
will become isolated vertices.

Finally, fill the rows with isolated vertices up to size k .

Micha l Pilipczuk ETH2 9/38

On a picture

2

3

2

3

2

3

2

3

Micha l Pilipczuk ETH2 10/38

On a picture

2

3

2

3

2

3

2

3

Micha l Pilipczuk ETH2 10/38

On a picture

2

3

2

3

2

3

2

3

Micha l Pilipczuk ETH2 10/38

On a picture

2

3

2

3

2

3

2

3

Micha l Pilipczuk ETH2 10/38

Equivalence

If there is a coloring, then there is a clique: trivial.

If there is a clique, then consider the coloring imposed by it.

Suppose there is an edge with endpoints of the same color.

Within a group: the coloring of this group would yield an
isolated vertex.
Between two groups: the corresponding colorings of the groups
wouldn’t be connected by an edge.

Since k = O(N/ logN), an O?(2o(k log k)) algorithm for

k × k-Clique implies a 2o(N
log N
·log N) = 2o(N) algorithm for

3-Coloring.

And we are done.

Micha l Pilipczuk ETH2 11/38

Equivalence

If there is a coloring, then there is a clique: trivial.

If there is a clique, then consider the coloring imposed by it.

Suppose there is an edge with endpoints of the same color.

Within a group: the coloring of this group would yield an
isolated vertex.
Between two groups: the corresponding colorings of the groups
wouldn’t be connected by an edge.

Since k = O(N/ logN), an O?(2o(k log k)) algorithm for

k × k-Clique implies a 2o(N
log N
·log N) = 2o(N) algorithm for

3-Coloring.

And we are done.

Micha l Pilipczuk ETH2 11/38

Equivalence

If there is a coloring, then there is a clique: trivial.

If there is a clique, then consider the coloring imposed by it.

Suppose there is an edge with endpoints of the same color.

Within a group: the coloring of this group would yield an
isolated vertex.
Between two groups: the corresponding colorings of the groups
wouldn’t be connected by an edge.

Since k = O(N/ logN), an O?(2o(k log k)) algorithm for

k × k-Clique implies a 2o(N
log N
·log N) = 2o(N) algorithm for

3-Coloring.

And we are done.

Micha l Pilipczuk ETH2 11/38

Equivalence

If there is a coloring, then there is a clique: trivial.

If there is a clique, then consider the coloring imposed by it.

Suppose there is an edge with endpoints of the same color.

Within a group: the coloring of this group would yield an
isolated vertex.

Between two groups: the corresponding colorings of the groups
wouldn’t be connected by an edge.

Since k = O(N/ logN), an O?(2o(k log k)) algorithm for

k × k-Clique implies a 2o(N
log N
·log N) = 2o(N) algorithm for

3-Coloring.

And we are done.

Micha l Pilipczuk ETH2 11/38

Equivalence

If there is a coloring, then there is a clique: trivial.

If there is a clique, then consider the coloring imposed by it.

Suppose there is an edge with endpoints of the same color.

Within a group: the coloring of this group would yield an
isolated vertex.
Between two groups: the corresponding colorings of the groups
wouldn’t be connected by an edge.

Since k = O(N/ logN), an O?(2o(k log k)) algorithm for

k × k-Clique implies a 2o(N
log N
·log N) = 2o(N) algorithm for

3-Coloring.

And we are done.

Micha l Pilipczuk ETH2 11/38

Equivalence

If there is a coloring, then there is a clique: trivial.

If there is a clique, then consider the coloring imposed by it.

Suppose there is an edge with endpoints of the same color.

Within a group: the coloring of this group would yield an
isolated vertex.
Between two groups: the corresponding colorings of the groups
wouldn’t be connected by an edge.

Since k = O(N/ logN), an O?(2o(k log k)) algorithm for

k × k-Clique implies a 2o(N
log N
·log N) = 2o(N) algorithm for

3-Coloring.

And we are done.

Micha l Pilipczuk ETH2 11/38

Equivalence

If there is a coloring, then there is a clique: trivial.

If there is a clique, then consider the coloring imposed by it.

Suppose there is an edge with endpoints of the same color.

Within a group: the coloring of this group would yield an
isolated vertex.
Between two groups: the corresponding colorings of the groups
wouldn’t be connected by an edge.

Since k = O(N/ logN), an O?(2o(k log k)) algorithm for

k × k-Clique implies a 2o(N
log N
·log N) = 2o(N) algorithm for

3-Coloring.

And we are done.

Micha l Pilipczuk ETH2 11/38

Permutation k × k-Clique

Permutation k × k-Clique

Input: A graph H on vertex set [k]× [k]
Question: Is there a k-clique in H that contains exactly one

vertex from each row and each column?

We would like to get the same lower bound also for this problem.

Micha l Pilipczuk ETH2 12/38

Permutation k × k-Clique

Permutation k × k-Clique

Input: A graph H on vertex set [k]× [k]
Question: Is there a k-clique in H that contains exactly one

vertex from each row and each column?

We would like to get the same lower bound also for this problem.

Micha l Pilipczuk ETH2 12/38

Lower bound

Suppose we have an O?(2o(k log k)) algorithm A for Perm
k × k-Clique.

Consider the following algorithm for k × k-Clique.

Shuffle each row uniformly and independently at random.

Apply algorithm A.

Probability that a solution becomes a permutation is k!
kk ≈ e−k .

Micha l Pilipczuk ETH2 13/38

Lower bound

Suppose we have an O?(2o(k log k)) algorithm A for Perm
k × k-Clique.

Consider the following algorithm for k × k-Clique.

Shuffle each row uniformly and independently at random.

Apply algorithm A.

Probability that a solution becomes a permutation is k!
kk ≈ e−k .

Micha l Pilipczuk ETH2 13/38

Lower bound

Suppose we have an O?(2o(k log k)) algorithm A for Perm
k × k-Clique.

Consider the following algorithm for k × k-Clique.

Shuffle each row uniformly and independently at random.

Apply algorithm A.

Probability that a solution becomes a permutation is k!
kk ≈ e−k .

Micha l Pilipczuk ETH2 13/38

Lower bound

Suppose we have an O?(2o(k log k)) algorithm A for Perm
k × k-Clique.

Consider the following algorithm for k × k-Clique.

Shuffle each row uniformly and independently at random.

Apply algorithm A.

Probability that a solution becomes a permutation is k!
kk ≈ e−k .

Micha l Pilipczuk ETH2 13/38

Lower bound

Suppose we have an O?(2o(k log k)) algorithm A for Perm
k × k-Clique.

Consider the following algorithm for k × k-Clique.

Shuffle each row uniformly and independently at random.

Apply algorithm A.

Probability that a solution becomes a permutation is k!
kk ≈ e−k .

Micha l Pilipczuk ETH2 13/38

Lower bound

We need to repeat the experiment roughly ek times to get error
probability < 1

2
.

But O?(ek · 2o(k log k)) = O?(2o(k log k)).

This gives hardness of Perm k × k-Clique under randomized
ETH.

Note: This can be derandomized, so hardness holds under
deterministic ETH as well.

Micha l Pilipczuk ETH2 14/38

Lower bound

We need to repeat the experiment roughly ek times to get error
probability < 1

2
.

But O?(ek · 2o(k log k)) = O?(2o(k log k)).

This gives hardness of Perm k × k-Clique under randomized
ETH.

Note: This can be derandomized, so hardness holds under
deterministic ETH as well.

Micha l Pilipczuk ETH2 14/38

Lower bound

We need to repeat the experiment roughly ek times to get error
probability < 1

2
.

But O?(ek · 2o(k log k)) = O?(2o(k log k)).

This gives hardness of Perm k × k-Clique under randomized
ETH.

Note: This can be derandomized, so hardness holds under
deterministic ETH as well.

Micha l Pilipczuk ETH2 14/38

Lower bound

We need to repeat the experiment roughly ek times to get error
probability < 1

2
.

But O?(ek · 2o(k log k)) = O?(2o(k log k)).

This gives hardness of Perm k × k-Clique under randomized
ETH.

Note: This can be derandomized, so hardness holds under
deterministic ETH as well.

Micha l Pilipczuk ETH2 14/38

k × k-Hitting Set

k × k-Hitting Set

Input: A family F of subsets of [k]× [k]
Question: Is there a set X that contains exactly one vertex from

each row and has a nonempty intersection with every
set of F?

O?(2o(k log k)) lower bound: easy reduction from k × k-Clique.

For every non-edge (i , j)− (i ′, j ′) of H, introduce a set
containing the whole rows i and i ′ apart from (i , j) and (i ′, j ′).

Same works for Perm k × k-Hitting Set and Perm
k × k-Clique.

Micha l Pilipczuk ETH2 15/38

k × k-Hitting Set

k × k-Hitting Set

Input: A family F of subsets of [k]× [k]
Question: Is there a set X that contains exactly one vertex from

each row and has a nonempty intersection with every
set of F?

O?(2o(k log k)) lower bound: easy reduction from k × k-Clique.

For every non-edge (i , j)− (i ′, j ′) of H, introduce a set
containing the whole rows i and i ′ apart from (i , j) and (i ′, j ′).

Same works for Perm k × k-Hitting Set and Perm
k × k-Clique.

Micha l Pilipczuk ETH2 15/38

k × k-Hitting Set

k × k-Hitting Set

Input: A family F of subsets of [k]× [k]
Question: Is there a set X that contains exactly one vertex from

each row and has a nonempty intersection with every
set of F?

O?(2o(k log k)) lower bound: easy reduction from k × k-Clique.

For every non-edge (i , j)− (i ′, j ′) of H, introduce a set
containing the whole rows i and i ′ apart from (i , j) and (i ′, j ′).

Same works for Perm k × k-Hitting Set and Perm
k × k-Clique.

Micha l Pilipczuk ETH2 15/38

k × k-Hitting Set

k × k-Hitting Set

Input: A family F of subsets of [k]× [k]
Question: Is there a set X that contains exactly one vertex from

each row and has a nonempty intersection with every
set of F?

O?(2o(k log k)) lower bound: easy reduction from k × k-Clique.

For every non-edge (i , j)− (i ′, j ′) of H, introduce a set
containing the whole rows i and i ′ apart from (i , j) and (i ′, j ′).

Same works for Perm k × k-Hitting Set and Perm
k × k-Clique.

Micha l Pilipczuk ETH2 15/38

On a picture

Micha l Pilipczuk ETH2 16/38

... with thin sets

Seems that k × k-Hitting Set in full generality is not that
useful.

k × k-Hitting Set with thin sets

Every set of F is required to contain at most one vertex from
each row.

One can show an O?(2o(k log k)) lower bound also for
k × k-Hitting Set with thin sets.

Technical reduction with a pivot problem: exercises in the book.

Same holds for Permutation....

Micha l Pilipczuk ETH2 17/38

... with thin sets

Seems that k × k-Hitting Set in full generality is not that
useful.

k × k-Hitting Set with thin sets

Every set of F is required to contain at most one vertex from
each row.

One can show an O?(2o(k log k)) lower bound also for
k × k-Hitting Set with thin sets.

Technical reduction with a pivot problem: exercises in the book.

Same holds for Permutation....

Micha l Pilipczuk ETH2 17/38

... with thin sets

Seems that k × k-Hitting Set in full generality is not that
useful.

k × k-Hitting Set with thin sets

Every set of F is required to contain at most one vertex from
each row.

One can show an O?(2o(k log k)) lower bound also for
k × k-Hitting Set with thin sets.

Technical reduction with a pivot problem: exercises in the book.

Same holds for Permutation....

Micha l Pilipczuk ETH2 17/38

... with thin sets

Seems that k × k-Hitting Set in full generality is not that
useful.

k × k-Hitting Set with thin sets

Every set of F is required to contain at most one vertex from
each row.

One can show an O?(2o(k log k)) lower bound also for
k × k-Hitting Set with thin sets.

Technical reduction with a pivot problem: exercises in the book.

Same holds for Permutation....

Micha l Pilipczuk ETH2 17/38

... with thin sets

Seems that k × k-Hitting Set in full generality is not that
useful.

k × k-Hitting Set with thin sets

Every set of F is required to contain at most one vertex from
each row.

One can show an O?(2o(k log k)) lower bound also for
k × k-Hitting Set with thin sets.

Technical reduction with a pivot problem: exercises in the book.

Same holds for Permutation....

Micha l Pilipczuk ETH2 17/38

... with thin sets

Seems that k × k-Hitting Set in full generality is not that
useful.

k × k-Hitting Set with thin sets

Every set of F is required to contain at most one vertex from
each row.

One can show an O?(2o(k log k)) lower bound also for
k × k-Hitting Set with thin sets.

Technical reduction with a pivot problem: exercises in the book.

Same holds for Permutation....

Micha l Pilipczuk ETH2 17/38

Application: Closest String

Closest String

Input: An alphabet Σ, strings x1, x2, . . . , xn over Σ,
each of length L, and an integer d

Question: Is there a string y ∈ ΣL that has Hamming distance
at most d to each xi?

There are algorithms with running time O?(dd) and O?(|Σ|d).

We now show that this is tight: Under ETH, there is neither
O?(2o(d log d)) nor O?(2o(d log |Σ|)) algorithm.

Reduction from Perm k × k-Hitting Set wts that gives an
instance with L = k , d = k − 1 and |Σ| = k + 1.

Micha l Pilipczuk ETH2 18/38

Application: Closest String

Closest String

Input: An alphabet Σ, strings x1, x2, . . . , xn over Σ,
each of length L, and an integer d

Question: Is there a string y ∈ ΣL that has Hamming distance
at most d to each xi?

There are algorithms with running time O?(dd) and O?(|Σ|d).

We now show that this is tight: Under ETH, there is neither
O?(2o(d log d)) nor O?(2o(d log |Σ|)) algorithm.

Reduction from Perm k × k-Hitting Set wts that gives an
instance with L = k , d = k − 1 and |Σ| = k + 1.

Micha l Pilipczuk ETH2 18/38

Application: Closest String

Closest String

Input: An alphabet Σ, strings x1, x2, . . . , xn over Σ,
each of length L, and an integer d

Question: Is there a string y ∈ ΣL that has Hamming distance
at most d to each xi?

There are algorithms with running time O?(dd) and O?(|Σ|d).

We now show that this is tight: Under ETH, there is neither
O?(2o(d log d)) nor O?(2o(d log |Σ|)) algorithm.

Reduction from Perm k × k-Hitting Set wts that gives an
instance with L = k , d = k − 1 and |Σ| = k + 1.

Micha l Pilipczuk ETH2 18/38

Application: Closest String

Closest String

Input: An alphabet Σ, strings x1, x2, . . . , xn over Σ,
each of length L, and an integer d

Question: Is there a string y ∈ ΣL that has Hamming distance
at most d to each xi?

There are algorithms with running time O?(dd) and O?(|Σ|d).

We now show that this is tight: Under ETH, there is neither
O?(2o(d log d)) nor O?(2o(d log |Σ|)) algorithm.

Reduction from Perm k × k-Hitting Set wts that gives an
instance with L = k , d = k − 1 and |Σ| = k + 1.

Micha l Pilipczuk ETH2 18/38

Reduction

1 2 3 4 5

1

2

3

4

5

Σ = [k] ∪ {F}

Create strings:

11111

22222

33333

44444

55555

142F5

3F3F1

11F43

1 2 3 4 5

1

2

3

4

5

Σ = [k] ∪ {F}

Create strings:

11111

22222

33333

44444

55555

142F5

3F3F1

11F43

1 2 3 4 5

1

2

3

4

5

Σ = [k] ∪ {F}

Create strings:

11111

22222

33333

44444

55555

142F5

3F3F1

11F43

1 2 3 4 5

1

2

3

4

5

Σ = [k] ∪ {F}

Create strings:

11111

22222

33333

44444

55555

142F5

3F3F1

11F43

1 2 3 4 5

1

2

3

4

5

Σ = [k] ∪ {F}

Create strings:

11111

22222

33333

44444

55555

142F5

3F3F1

11F43

Micha l Pilipczuk ETH2 19/38

Reduction

1 2 3 4 5

1

2

3

4

5

Σ = [k] ∪ {F}

Create strings:

11111

22222

33333

44444

55555

142F5

3F3F1

11F43

1 2 3 4 5

1

2

3

4

5

Σ = [k] ∪ {F}

Create strings:

11111

22222

33333

44444

55555

142F5

3F3F1

11F43

1 2 3 4 5

1

2

3

4

5

Σ = [k] ∪ {F}

Create strings:

11111

22222

33333

44444

55555

142F5

3F3F1

11F43

1 2 3 4 5

1

2

3

4

5

Σ = [k] ∪ {F}

Create strings:

11111

22222

33333

44444

55555

142F5

3F3F1

11F43

1 2 3 4 5

1

2

3

4

5

Σ = [k] ∪ {F}

Create strings:

11111

22222

33333

44444

55555

142F5

3F3F1

11F43

Micha l Pilipczuk ETH2 19/38

Reduction

1 2 3 4 5

1

2

3

4

5

Σ = [k] ∪ {F}

Create strings:

11111

22222

33333

44444

55555

142F5

3F3F1

11F43

1 2 3 4 5

1

2

3

4

5

Σ = [k] ∪ {F}

Create strings:

11111

22222

33333

44444

55555

142F5

3F3F1

11F43

1 2 3 4 5

1

2

3

4

5

Σ = [k] ∪ {F}

Create strings:

11111

22222

33333

44444

55555

142F5

3F3F1

11F43

1 2 3 4 5

1

2

3

4

5

Σ = [k] ∪ {F}

Create strings:

11111

22222

33333

44444

55555

142F5

3F3F1

11F43

1 2 3 4 5

1

2

3

4

5

Σ = [k] ∪ {F}

Create strings:

11111

22222

33333

44444

55555

142F5

3F3F1

11F43

Micha l Pilipczuk ETH2 19/38

Reduction

1 2 3 4 5

1

2

3

4

5

Σ = [k] ∪ {F}

Create strings:

11111

22222

33333

44444

55555

142F5

3F3F1

11F43

1 2 3 4 5

1

2

3

4

5

Σ = [k] ∪ {F}

Create strings:

11111

22222

33333

44444

55555

142F5

3F3F1

11F43

1 2 3 4 5

1

2

3

4

5

Σ = [k] ∪ {F}

Create strings:

11111

22222

33333

44444

55555

142F5

3F3F1

11F43

1 2 3 4 5

1

2

3

4

5

Σ = [k] ∪ {F}

Create strings:

11111

22222

33333

44444

55555

142F5

3F3F1

11F43

1 2 3 4 5

1

2

3

4

5

Σ = [k] ∪ {F}

Create strings:

11111

22222

33333

44444

55555

142F5

3F3F1

11F43

Micha l Pilipczuk ETH2 19/38

Reduction

1 2 3 4 5

1

2

3

4

5

Σ = [k] ∪ {F}

Create strings:

11111

22222

33333

44444

55555

142F5

3F3F1

11F43

1 2 3 4 5

1

2

3

4

5

Σ = [k] ∪ {F}

Create strings:

11111

22222

33333

44444

55555

142F5

3F3F1

11F43

1 2 3 4 5

1

2

3

4

5

Σ = [k] ∪ {F}

Create strings:

11111

22222

33333

44444

55555

142F5

3F3F1

11F43

1 2 3 4 5

1

2

3

4

5

Σ = [k] ∪ {F}

Create strings:

11111

22222

33333

44444

55555

142F5

3F3F1

11F43

1 2 3 4 5

1

2

3

4

5

Σ = [k] ∪ {F}

Create strings:

11111

22222

33333

44444

55555

142F5

3F3F1

11F43

Micha l Pilipczuk ETH2 19/38

Equivalence

Suppose there is some string y at distance ≤ d = k − 1 from all
the constructed strings.

Eq: y shares at least one symbol with each constructed string.

Sharing with strings of the form iii . . . ii
⇒ y uses every symbol from [k] exactly once.

In particular, y does not use F, so it encodes a solution to
Perm k × k-Hitting Set wts.

y shares a symbol with x created for X ⇔ the solution hits X

The second implication works the same.

Ex: What breaks if we start from k × k-Hitting Set wts?

Micha l Pilipczuk ETH2 20/38

Equivalence

Suppose there is some string y at distance ≤ d = k − 1 from all
the constructed strings.

Eq: y shares at least one symbol with each constructed string.

Sharing with strings of the form iii . . . ii
⇒ y uses every symbol from [k] exactly once.

In particular, y does not use F, so it encodes a solution to
Perm k × k-Hitting Set wts.

y shares a symbol with x created for X ⇔ the solution hits X

The second implication works the same.

Ex: What breaks if we start from k × k-Hitting Set wts?

Micha l Pilipczuk ETH2 20/38

Equivalence

Suppose there is some string y at distance ≤ d = k − 1 from all
the constructed strings.

Eq: y shares at least one symbol with each constructed string.

Sharing with strings of the form iii . . . ii
⇒ y uses every symbol from [k] exactly once.

In particular, y does not use F, so it encodes a solution to
Perm k × k-Hitting Set wts.

y shares a symbol with x created for X ⇔ the solution hits X

The second implication works the same.

Ex: What breaks if we start from k × k-Hitting Set wts?

Micha l Pilipczuk ETH2 20/38

Equivalence

Suppose there is some string y at distance ≤ d = k − 1 from all
the constructed strings.

Eq: y shares at least one symbol with each constructed string.

Sharing with strings of the form iii . . . ii
⇒ y uses every symbol from [k] exactly once.

In particular, y does not use F, so it encodes a solution to
Perm k × k-Hitting Set wts.

y shares a symbol with x created for X ⇔ the solution hits X

The second implication works the same.

Ex: What breaks if we start from k × k-Hitting Set wts?

Micha l Pilipczuk ETH2 20/38

Equivalence

Suppose there is some string y at distance ≤ d = k − 1 from all
the constructed strings.

Eq: y shares at least one symbol with each constructed string.

Sharing with strings of the form iii . . . ii
⇒ y uses every symbol from [k] exactly once.

In particular, y does not use F, so it encodes a solution to
Perm k × k-Hitting Set wts.

y shares a symbol with x created for X ⇔ the solution hits X

The second implication works the same.

Ex: What breaks if we start from k × k-Hitting Set wts?

Micha l Pilipczuk ETH2 20/38

Equivalence

Suppose there is some string y at distance ≤ d = k − 1 from all
the constructed strings.

Eq: y shares at least one symbol with each constructed string.

Sharing with strings of the form iii . . . ii
⇒ y uses every symbol from [k] exactly once.

In particular, y does not use F, so it encodes a solution to
Perm k × k-Hitting Set wts.

y shares a symbol with x created for X ⇔ the solution hits X

The second implication works the same.

Ex: What breaks if we start from k × k-Hitting Set wts?

Micha l Pilipczuk ETH2 20/38

Equivalence

Suppose there is some string y at distance ≤ d = k − 1 from all
the constructed strings.

Eq: y shares at least one symbol with each constructed string.

Sharing with strings of the form iii . . . ii
⇒ y uses every symbol from [k] exactly once.

In particular, y does not use F, so it encodes a solution to
Perm k × k-Hitting Set wts.

y shares a symbol with x created for X ⇔ the solution hits X

The second implication works the same.

Ex: What breaks if we start from k × k-Hitting Set wts?

Micha l Pilipczuk ETH2 20/38

Other lower bounds

Time O?(2O(t log t)) appears naturally when DP on treewidth
keeps partitions of the bag as states.

Cycle Packing: pack at least r cycles into the graph.
Vertex Disjoint Paths: find k vertex-disjoint paths
between given pairs of terminals (s1, t1), (s2, t2), . . . , (sk , tk)

Both these problems do not admit O?(2o(t log t)) algorithms when
parameterized by treewidth, unless ETH fails.

Methodology similar to what Daniel will talk about during the
lecture on SETH.

Micha l Pilipczuk ETH2 21/38

Other lower bounds

Time O?(2O(t log t)) appears naturally when DP on treewidth
keeps partitions of the bag as states.

Cycle Packing: pack at least r cycles into the graph.

Vertex Disjoint Paths: find k vertex-disjoint paths
between given pairs of terminals (s1, t1), (s2, t2), . . . , (sk , tk)

Both these problems do not admit O?(2o(t log t)) algorithms when
parameterized by treewidth, unless ETH fails.

Methodology similar to what Daniel will talk about during the
lecture on SETH.

Micha l Pilipczuk ETH2 21/38

Other lower bounds

Time O?(2O(t log t)) appears naturally when DP on treewidth
keeps partitions of the bag as states.

Cycle Packing: pack at least r cycles into the graph.
Vertex Disjoint Paths: find k vertex-disjoint paths
between given pairs of terminals (s1, t1), (s2, t2), . . . , (sk , tk)

Both these problems do not admit O?(2o(t log t)) algorithms when
parameterized by treewidth, unless ETH fails.

Methodology similar to what Daniel will talk about during the
lecture on SETH.

Micha l Pilipczuk ETH2 21/38

Other lower bounds

Time O?(2O(t log t)) appears naturally when DP on treewidth
keeps partitions of the bag as states.

Cycle Packing: pack at least r cycles into the graph.
Vertex Disjoint Paths: find k vertex-disjoint paths
between given pairs of terminals (s1, t1), (s2, t2), . . . , (sk , tk)

Both these problems do not admit O?(2o(t log t)) algorithms when
parameterized by treewidth, unless ETH fails.

Methodology similar to what Daniel will talk about during the
lecture on SETH.

Micha l Pilipczuk ETH2 21/38

Other lower bounds

Time O?(2O(t log t)) appears naturally when DP on treewidth
keeps partitions of the bag as states.

Cycle Packing: pack at least r cycles into the graph.
Vertex Disjoint Paths: find k vertex-disjoint paths
between given pairs of terminals (s1, t1), (s2, t2), . . . , (sk , tk)

Both these problems do not admit O?(2o(t log t)) algorithms when
parameterized by treewidth, unless ETH fails.

Methodology similar to what Daniel will talk about during the
lecture on SETH.

Micha l Pilipczuk ETH2 21/38

W[1]-hardness on planar graphs

Previous lecture: typical lower bounds of the form O?(2o(
√
k))

for problems on planar graphs.

On planar graphs, many more problems are FPT, but there are
also W[1]-hard ones.

Typical behaviour:

Upper bound: an nO(
√
k) algorithm

Lower bound: no f (k) · no(
√
k) algorithm for any

computable f , unless ETH fails.

Now: a framework for proving such results.

Recall: under ETH, Clique does not have an f (k) · no(k)

algorithm for any computable f .

Micha l Pilipczuk ETH2 22/38

W[1]-hardness on planar graphs

Previous lecture: typical lower bounds of the form O?(2o(
√
k))

for problems on planar graphs.

On planar graphs, many more problems are FPT, but there are
also W[1]-hard ones.

Typical behaviour:

Upper bound: an nO(
√
k) algorithm

Lower bound: no f (k) · no(
√
k) algorithm for any

computable f , unless ETH fails.

Now: a framework for proving such results.

Recall: under ETH, Clique does not have an f (k) · no(k)

algorithm for any computable f .

Micha l Pilipczuk ETH2 22/38

W[1]-hardness on planar graphs

Previous lecture: typical lower bounds of the form O?(2o(
√
k))

for problems on planar graphs.

On planar graphs, many more problems are FPT, but there are
also W[1]-hard ones.

Typical behaviour:

Upper bound: an nO(
√
k) algorithm

Lower bound: no f (k) · no(
√
k) algorithm for any

computable f , unless ETH fails.

Now: a framework for proving such results.

Recall: under ETH, Clique does not have an f (k) · no(k)

algorithm for any computable f .

Micha l Pilipczuk ETH2 22/38

W[1]-hardness on planar graphs

Previous lecture: typical lower bounds of the form O?(2o(
√
k))

for problems on planar graphs.

On planar graphs, many more problems are FPT, but there are
also W[1]-hard ones.

Typical behaviour:

Upper bound: an nO(
√
k) algorithm

Lower bound: no f (k) · no(
√
k) algorithm for any

computable f , unless ETH fails.

Now: a framework for proving such results.

Recall: under ETH, Clique does not have an f (k) · no(k)

algorithm for any computable f .

Micha l Pilipczuk ETH2 22/38

W[1]-hardness on planar graphs

Previous lecture: typical lower bounds of the form O?(2o(
√
k))

for problems on planar graphs.

On planar graphs, many more problems are FPT, but there are
also W[1]-hard ones.

Typical behaviour:

Upper bound: an nO(
√
k) algorithm

Lower bound: no f (k) · no(
√
k) algorithm for any

computable f , unless ETH fails.

Now: a framework for proving such results.

Recall: under ETH, Clique does not have an f (k) · no(k)

algorithm for any computable f .

Micha l Pilipczuk ETH2 22/38

W[1]-hardness on planar graphs

Previous lecture: typical lower bounds of the form O?(2o(
√
k))

for problems on planar graphs.

On planar graphs, many more problems are FPT, but there are
also W[1]-hard ones.

Typical behaviour:

Upper bound: an nO(
√
k) algorithm

Lower bound: no f (k) · no(
√
k) algorithm for any

computable f , unless ETH fails.

Now: a framework for proving such results.

Recall: under ETH, Clique does not have an f (k) · no(k)

algorithm for any computable f .

Micha l Pilipczuk ETH2 22/38

W[1]-hardness on planar graphs

Previous lecture: typical lower bounds of the form O?(2o(
√
k))

for problems on planar graphs.

On planar graphs, many more problems are FPT, but there are
also W[1]-hard ones.

Typical behaviour:

Upper bound: an nO(
√
k) algorithm

Lower bound: no f (k) · no(
√
k) algorithm for any

computable f , unless ETH fails.

Now: a framework for proving such results.

Recall: under ETH, Clique does not have an f (k) · no(k)

algorithm for any computable f .

Micha l Pilipczuk ETH2 22/38

Grid Tiling

Grid Tiling

Input: Integers k , n and sets Si ,j ⊆ [n]× [n]
for (i , j) ∈ [k]× [k].

Question: Can one pick si ,j ∈ Si ,j for each (i , j) ∈ [k]× [k] s.t.
(a) If si ,j = (a, b) and si+1,j = (a′, b′), then a = a′.
(b) If si ,j = (a, b) and si ,j+1 = (a′, b′), then b = b′.

Micha l Pilipczuk ETH2 23/38

On a picture

S1,1 :

(1, 1)

(3, 1)

(2, 4)

S1,1 :

(1, 1)

(3, 1)

(2, 4)

S2,1 :

(2, 2)

(1, 4)

S3,1 :

(1, 3)

(2, 3)

(3, 3)

S1,2 :

(5, 1)

(1, 4)

(5, 3)

S2,2 :

(3, 1)

(1, 2)

S3,2 :

(1, 1)

(1, 3)

S1,3 :

(1, 1)

(2, 4)

(3, 3)

S2,3 :

(2, 2)

(2, 3)

S3,3 :

(2, 3)

(5, 3)

S1,1 :

(1, 1)

(3, 1)

(2, 4)

S1,1 :

(1, 1)

(3, 1)

(2, 4)

S2,1 :

(2, 2)

(1, 4)

S3,1 :

(1, 3)

(2, 3)

(3, 3)

S1,2 :

(5, 1)

(1, 4)

(5, 3)

S2,2 :

(3, 1)

(1, 2)

S3,2 :

(1, 1)

(1, 3)

S1,3 :

(1, 1)

(2, 4)

(3, 3)

S2,3 :

(2, 2)

(2, 3)

S3,3 :

(2, 3)

(5, 3)

Micha l Pilipczuk ETH2 24/38

On a picture

S1,1 :

(1, 1)

(3, 1)

(2, 4)

S1,1 :

(1, 1)

(3, 1)

(2, 4)

S2,1 :

(2, 2)

(1, 4)

S3,1 :

(1, 3)

(2, 3)

(3, 3)

S1,2 :

(5, 1)

(1, 4)

(5, 3)

S2,2 :

(3, 1)

(1, 2)

S3,2 :

(1, 1)

(1, 3)

S1,3 :

(1, 1)

(2, 4)

(3, 3)

S2,3 :

(2, 2)

(2, 3)

S3,3 :

(2, 3)

(5, 3)

S1,1 :

(1, 1)

(3, 1)

(2, 4)

S1,1 :

(1, 1)

(3, 1)

(2, 4)

S2,1 :

(2, 2)

(1, 4)

S3,1 :

(1, 3)

(2, 3)

(3, 3)

S1,2 :

(5, 1)

(1, 4)

(5, 3)

S2,2 :

(3, 1)

(1, 2)

S3,2 :

(1, 1)

(1, 3)

S1,3 :

(1, 1)

(2, 4)

(3, 3)

S2,3 :

(2, 2)

(2, 3)

S3,3 :

(2, 3)

(5, 3)

Micha l Pilipczuk ETH2 24/38

Lower bound for Grid Tiling

Claim: Grid Tiling does not have an f (k) · no(k) algorithm
for any computable f , unless ETH fails.

Take an instance (G , k) of Clique, where V (G) = [n].

For 1 ≤ i ≤ k, put Si ,i = {(a, a) : 1 ≤ a ≤ n}.
For 1 ≤ i , j ≤ k, i 6= j , put
Si ,j = {(a, b) : a 6= b and ab ∈ E (G)}.

Cells on diagonal ensure that vertices chosen on rows are the
same as vertices chosen on columns.

Cell (i , j) for i 6= j ensures that the i -th and the j-th chosen
vertex are distinct and adjacent.

Hence, choosing vertices on the rows/columns models choosing
a k-clique in G .

Micha l Pilipczuk ETH2 25/38

Lower bound for Grid Tiling

Claim: Grid Tiling does not have an f (k) · no(k) algorithm
for any computable f , unless ETH fails.

Take an instance (G , k) of Clique, where V (G) = [n].

For 1 ≤ i ≤ k, put Si ,i = {(a, a) : 1 ≤ a ≤ n}.
For 1 ≤ i , j ≤ k, i 6= j , put
Si ,j = {(a, b) : a 6= b and ab ∈ E (G)}.

Cells on diagonal ensure that vertices chosen on rows are the
same as vertices chosen on columns.

Cell (i , j) for i 6= j ensures that the i -th and the j-th chosen
vertex are distinct and adjacent.

Hence, choosing vertices on the rows/columns models choosing
a k-clique in G .

Micha l Pilipczuk ETH2 25/38

Lower bound for Grid Tiling

Claim: Grid Tiling does not have an f (k) · no(k) algorithm
for any computable f , unless ETH fails.

Take an instance (G , k) of Clique, where V (G) = [n].

For 1 ≤ i ≤ k, put Si ,i = {(a, a) : 1 ≤ a ≤ n}.

For 1 ≤ i , j ≤ k, i 6= j , put
Si ,j = {(a, b) : a 6= b and ab ∈ E (G)}.

Cells on diagonal ensure that vertices chosen on rows are the
same as vertices chosen on columns.

Cell (i , j) for i 6= j ensures that the i -th and the j-th chosen
vertex are distinct and adjacent.

Hence, choosing vertices on the rows/columns models choosing
a k-clique in G .

Micha l Pilipczuk ETH2 25/38

Lower bound for Grid Tiling

Claim: Grid Tiling does not have an f (k) · no(k) algorithm
for any computable f , unless ETH fails.

Take an instance (G , k) of Clique, where V (G) = [n].

For 1 ≤ i ≤ k, put Si ,i = {(a, a) : 1 ≤ a ≤ n}.
For 1 ≤ i , j ≤ k, i 6= j , put
Si ,j = {(a, b) : a 6= b and ab ∈ E (G)}.

Cells on diagonal ensure that vertices chosen on rows are the
same as vertices chosen on columns.

Cell (i , j) for i 6= j ensures that the i -th and the j-th chosen
vertex are distinct and adjacent.

Hence, choosing vertices on the rows/columns models choosing
a k-clique in G .

Micha l Pilipczuk ETH2 25/38

Lower bound for Grid Tiling

Claim: Grid Tiling does not have an f (k) · no(k) algorithm
for any computable f , unless ETH fails.

Take an instance (G , k) of Clique, where V (G) = [n].

For 1 ≤ i ≤ k, put Si ,i = {(a, a) : 1 ≤ a ≤ n}.
For 1 ≤ i , j ≤ k, i 6= j , put
Si ,j = {(a, b) : a 6= b and ab ∈ E (G)}.

Cells on diagonal ensure that vertices chosen on rows are the
same as vertices chosen on columns.

Cell (i , j) for i 6= j ensures that the i -th and the j-th chosen
vertex are distinct and adjacent.

Hence, choosing vertices on the rows/columns models choosing
a k-clique in G .

Micha l Pilipczuk ETH2 25/38

Lower bound for Grid Tiling

Claim: Grid Tiling does not have an f (k) · no(k) algorithm
for any computable f , unless ETH fails.

Take an instance (G , k) of Clique, where V (G) = [n].

For 1 ≤ i ≤ k, put Si ,i = {(a, a) : 1 ≤ a ≤ n}.
For 1 ≤ i , j ≤ k, i 6= j , put
Si ,j = {(a, b) : a 6= b and ab ∈ E (G)}.

Cells on diagonal ensure that vertices chosen on rows are the
same as vertices chosen on columns.

Cell (i , j) for i 6= j ensures that the i -th and the j-th chosen
vertex are distinct and adjacent.

Hence, choosing vertices on the rows/columns models choosing
a k-clique in G .

Micha l Pilipczuk ETH2 25/38

Lower bound for Grid Tiling

Claim: Grid Tiling does not have an f (k) · no(k) algorithm
for any computable f , unless ETH fails.

Take an instance (G , k) of Clique, where V (G) = [n].

For 1 ≤ i ≤ k, put Si ,i = {(a, a) : 1 ≤ a ≤ n}.
For 1 ≤ i , j ≤ k, i 6= j , put
Si ,j = {(a, b) : a 6= b and ab ∈ E (G)}.

Cells on diagonal ensure that vertices chosen on rows are the
same as vertices chosen on columns.

Cell (i , j) for i 6= j ensures that the i -th and the j-th chosen
vertex are distinct and adjacent.

Hence, choosing vertices on the rows/columns models choosing
a k-clique in G .

Micha l Pilipczuk ETH2 25/38

Ideas for applications

A grid has a planar structure that a clique is missing.

Generic reduction from Grid Tiling:

Model each cell with a planar 1-in-n gadget.
Wire the neighboring cells to encode the Grid Tiling
behaviour.
If each cell contributes O(1) to the parameter, then the final
parameter is O(k2).

This gives f (k) · no(
√
k) lower bound under ETH.

Equality in Grid Tiling is not always convenient. For
packing/domination, an inequality would be nicer.

Micha l Pilipczuk ETH2 26/38

Ideas for applications

A grid has a planar structure that a clique is missing.

Generic reduction from Grid Tiling:

Model each cell with a planar 1-in-n gadget.
Wire the neighboring cells to encode the Grid Tiling
behaviour.
If each cell contributes O(1) to the parameter, then the final
parameter is O(k2).

This gives f (k) · no(
√
k) lower bound under ETH.

Equality in Grid Tiling is not always convenient. For
packing/domination, an inequality would be nicer.

Micha l Pilipczuk ETH2 26/38

Ideas for applications

A grid has a planar structure that a clique is missing.

Generic reduction from Grid Tiling:

Model each cell with a planar 1-in-n gadget.

Wire the neighboring cells to encode the Grid Tiling
behaviour.
If each cell contributes O(1) to the parameter, then the final
parameter is O(k2).

This gives f (k) · no(
√
k) lower bound under ETH.

Equality in Grid Tiling is not always convenient. For
packing/domination, an inequality would be nicer.

Micha l Pilipczuk ETH2 26/38

Ideas for applications

A grid has a planar structure that a clique is missing.

Generic reduction from Grid Tiling:

Model each cell with a planar 1-in-n gadget.
Wire the neighboring cells to encode the Grid Tiling
behaviour.

If each cell contributes O(1) to the parameter, then the final
parameter is O(k2).

This gives f (k) · no(
√
k) lower bound under ETH.

Equality in Grid Tiling is not always convenient. For
packing/domination, an inequality would be nicer.

Micha l Pilipczuk ETH2 26/38

Ideas for applications

A grid has a planar structure that a clique is missing.

Generic reduction from Grid Tiling:

Model each cell with a planar 1-in-n gadget.
Wire the neighboring cells to encode the Grid Tiling
behaviour.
If each cell contributes O(1) to the parameter, then the final
parameter is O(k2).

This gives f (k) · no(
√
k) lower bound under ETH.

Equality in Grid Tiling is not always convenient. For
packing/domination, an inequality would be nicer.

Micha l Pilipczuk ETH2 26/38

Ideas for applications

A grid has a planar structure that a clique is missing.

Generic reduction from Grid Tiling:

Model each cell with a planar 1-in-n gadget.
Wire the neighboring cells to encode the Grid Tiling
behaviour.
If each cell contributes O(1) to the parameter, then the final
parameter is O(k2).

This gives f (k) · no(
√
k) lower bound under ETH.

Equality in Grid Tiling is not always convenient. For
packing/domination, an inequality would be nicer.

Micha l Pilipczuk ETH2 26/38

Ideas for applications

A grid has a planar structure that a clique is missing.

Generic reduction from Grid Tiling:

Model each cell with a planar 1-in-n gadget.
Wire the neighboring cells to encode the Grid Tiling
behaviour.
If each cell contributes O(1) to the parameter, then the final
parameter is O(k2).

This gives f (k) · no(
√
k) lower bound under ETH.

Equality in Grid Tiling is not always convenient. For
packing/domination, an inequality would be nicer.

Micha l Pilipczuk ETH2 26/38

Grid Tiling with ≤

Grid Tiling with ≤
Input: Integers k , n and sets Si ,j ⊆ [n]× [n]

for (i , j) ∈ [k]× [k].
Question: Can one pick si ,j ∈ Si ,j for each (i , j) ∈ [k]× [k] s.t.

(a) If si ,j = (a, b) and si+1,j = (a′, b′), then a≤a′.
(b) If si ,j = (a, b) and si ,j+1 = (a′, b′), then b≤b′.

Micha l Pilipczuk ETH2 27/38

On a picture

S1,1 :

(1, 1)

(3, 1)

(2, 4)

S1,1 :

(1, 1)

(3, 1)

(2, 4)

S2,1 :

(2, 2)

(1, 4)

S3,1 :

(1, 3)

(2, 3)

(3, 3)

S1,2 :

(5, 1)

(1, 4)

(5, 3)

S2,2 :

(3, 1)

(2, 2)

S3,2 :

(1, 1)

(2, 3)

S1,3 :

(1, 1)

(2, 5)

(3, 3)

S2,3 :

(3, 2)

(2, 3)

S3,3 :

(5, 4)

(3, 4)

Micha l Pilipczuk ETH2 28/38

Grid Tiling with ≤: lower bound

Grid Tiling with ≤: also no f (k) · no(k) algorithm for any
computable f under ETH.

Technical reduction from standard Grid Tiling.

Idea: replace each row/column with 2 rows/columns. Whenever
in the first row there is some a, on the second there is M − a.
Hence the rows work against each other, implying equality.

Actually we need 4 rows/columns for synchronization, so each
cell is replaced with 16 cells. Quite some details, see the book.

Micha l Pilipczuk ETH2 29/38

Grid Tiling with ≤: lower bound

Grid Tiling with ≤: also no f (k) · no(k) algorithm for any
computable f under ETH.

Technical reduction from standard Grid Tiling.

Idea: replace each row/column with 2 rows/columns. Whenever
in the first row there is some a, on the second there is M − a.
Hence the rows work against each other, implying equality.

Actually we need 4 rows/columns for synchronization, so each
cell is replaced with 16 cells. Quite some details, see the book.

Micha l Pilipczuk ETH2 29/38

Grid Tiling with ≤: lower bound

Grid Tiling with ≤: also no f (k) · no(k) algorithm for any
computable f under ETH.

Technical reduction from standard Grid Tiling.

Idea: replace each row/column with 2 rows/columns. Whenever
in the first row there is some a, on the second there is M − a.
Hence the rows work against each other, implying equality.

Actually we need 4 rows/columns for synchronization, so each
cell is replaced with 16 cells. Quite some details, see the book.

Micha l Pilipczuk ETH2 29/38

Grid Tiling with ≤: lower bound

Grid Tiling with ≤: also no f (k) · no(k) algorithm for any
computable f under ETH.

Technical reduction from standard Grid Tiling.

Idea: replace each row/column with 2 rows/columns. Whenever
in the first row there is some a, on the second there is M − a.
Hence the rows work against each other, implying equality.

Actually we need 4 rows/columns for synchronization, so each
cell is replaced with 16 cells. Quite some details, see the book.

Micha l Pilipczuk ETH2 29/38

Application 1: d-Scattered Set

d-Scattered Set

Input: Graph G , integers k and d
Question: Does there exist a set of k vertices in G that

are pairwise at distance at least d from each other?

Micha l Pilipczuk ETH2 30/38

On d-Scattered Set

2-Scattered Set=Independent Set

We focus on Planar d-Scattered Set.

When d is constant, then O?(2O(
√
k)) algorithm.

When d is a parameter, then FPT par. by k + d .

When d is unbounded, then there is an nO(
√
k)-time algorithm.

Now: By a reduction from Grid Tiling with ≤, we show
that the problem is W[1]-hard and does not admit an

f (k) · no(
√
k) algorithm under ETH.

Micha l Pilipczuk ETH2 31/38

On d-Scattered Set

2-Scattered Set=Independent Set

We focus on Planar d-Scattered Set.

When d is constant, then O?(2O(
√
k)) algorithm.

When d is a parameter, then FPT par. by k + d .

When d is unbounded, then there is an nO(
√
k)-time algorithm.

Now: By a reduction from Grid Tiling with ≤, we show
that the problem is W[1]-hard and does not admit an

f (k) · no(
√
k) algorithm under ETH.

Micha l Pilipczuk ETH2 31/38

On d-Scattered Set

2-Scattered Set=Independent Set

We focus on Planar d-Scattered Set.

When d is constant, then O?(2O(
√
k)) algorithm.

When d is a parameter, then FPT par. by k + d .

When d is unbounded, then there is an nO(
√
k)-time algorithm.

Now: By a reduction from Grid Tiling with ≤, we show
that the problem is W[1]-hard and does not admit an

f (k) · no(
√
k) algorithm under ETH.

Micha l Pilipczuk ETH2 31/38

On d-Scattered Set

2-Scattered Set=Independent Set

We focus on Planar d-Scattered Set.

When d is constant, then O?(2O(
√
k)) algorithm.

When d is a parameter, then FPT par. by k + d .

When d is unbounded, then there is an nO(
√
k)-time algorithm.

Now: By a reduction from Grid Tiling with ≤, we show
that the problem is W[1]-hard and does not admit an

f (k) · no(
√
k) algorithm under ETH.

Micha l Pilipczuk ETH2 31/38

On d-Scattered Set

2-Scattered Set=Independent Set

We focus on Planar d-Scattered Set.

When d is constant, then O?(2O(
√
k)) algorithm.

When d is a parameter, then FPT par. by k + d .

When d is unbounded, then there is an nO(
√
k)-time algorithm.

Now: By a reduction from Grid Tiling with ≤, we show
that the problem is W[1]-hard and does not admit an

f (k) · no(
√
k) algorithm under ETH.

Micha l Pilipczuk ETH2 31/38

On d-Scattered Set

2-Scattered Set=Independent Set

We focus on Planar d-Scattered Set.

When d is constant, then O?(2O(
√
k)) algorithm.

When d is a parameter, then FPT par. by k + d .

When d is unbounded, then there is an nO(
√
k)-time algorithm.

Now: By a reduction from Grid Tiling with ≤, we show
that the problem is W[1]-hard and does not admit an

f (k) · no(
√
k) algorithm under ETH.

Micha l Pilipczuk ETH2 31/38

Reduction for Planar d-Scattered Set

S1,1 :

(1, 1)

(3, 1)

(2, 4)

S1,1 :

(1, 1)

(3, 1)

(2, 4)

S2,1 :

(2, 2)

(1, 4)

S3,1 :

(1, 3)

(2, 3)

(3, 3)

S1,2 :

(5, 1)

(1, 4)

(5, 3)

S2,2 :

(3, 1)

(2, 2)

S3,2 :

(1, 1)

(2, 3)

S1,3 :

(1, 1)

(2, 5)

(3, 3)

S2,3 :

(3, 2)

(2, 3)

S3,3 :

(5, 4)

(3, 4)

M = 10 · n10M = 10 · n10 d = 3M + n + 1

Micha l Pilipczuk ETH2 32/38

Reduction for Planar d-Scattered Set

S1,1 :

(1, 1)

(3, 1)

(2, 4)

S1,1 :

(1, 1)

(3, 1)

(2, 4)

S2,1 :

(2, 2)

(1, 4)

S3,1 :

(1, 3)

(2, 3)

(3, 3)

S1,2 :

(5, 1)

(1, 4)

(5, 3)

S2,2 :

(3, 1)

(2, 2)

S3,2 :

(1, 1)

(2, 3)

S1,3 :

(1, 1)

(2, 5)

(3, 3)

S2,3 :

(3, 2)

(2, 3)

S3,3 :

(5, 4)

(3, 4)

M = 10 · n10

M = 10 · n10 d = 3M + n + 1

Micha l Pilipczuk ETH2 32/38

Reduction for Planar d-Scattered Set

S1,1 :

(1, 1)

(3, 1)

(2, 4)

S1,1 :

(1, 1)

(3, 1)

(2, 4)

S2,1 :

(2, 2)

(1, 4)

S3,1 :

(1, 3)

(2, 3)

(3, 3)

S1,2 :

(5, 1)

(1, 4)

(5, 3)

S2,2 :

(3, 1)

(2, 2)

S3,2 :

(1, 1)

(2, 3)

S1,3 :

(1, 1)

(2, 5)

(3, 3)

S2,3 :

(3, 2)

(2, 3)

S3,3 :

(5, 4)

(3, 4)
M = 10 · n10

M = 10 · n10 d = 3M + n + 1

Micha l Pilipczuk ETH2 32/38

Wrapping up

We asked for a scattered set of size k2, so the parameter
blow-up is quadratic.

This gives an f (k) · no(
√
k) lower bound for Planar

d-Scattered Set.

Upper bound: DP on possible separators of the graph of
interaction between vertices of the solution.

This graph is planar and hence has treewidth O(
√
k).

Plays well with the lower bound: the grid has asymptotically the
worst possible treewidth.

Micha l Pilipczuk ETH2 33/38

Wrapping up

We asked for a scattered set of size k2, so the parameter
blow-up is quadratic.

This gives an f (k) · no(
√
k) lower bound for Planar

d-Scattered Set.

Upper bound: DP on possible separators of the graph of
interaction between vertices of the solution.

This graph is planar and hence has treewidth O(
√
k).

Plays well with the lower bound: the grid has asymptotically the
worst possible treewidth.

Micha l Pilipczuk ETH2 33/38

Wrapping up

We asked for a scattered set of size k2, so the parameter
blow-up is quadratic.

This gives an f (k) · no(
√
k) lower bound for Planar

d-Scattered Set.

Upper bound: DP on possible separators of the graph of
interaction between vertices of the solution.

This graph is planar and hence has treewidth O(
√
k).

Plays well with the lower bound: the grid has asymptotically the
worst possible treewidth.

Micha l Pilipczuk ETH2 33/38

Wrapping up

We asked for a scattered set of size k2, so the parameter
blow-up is quadratic.

This gives an f (k) · no(
√
k) lower bound for Planar

d-Scattered Set.

Upper bound: DP on possible separators of the graph of
interaction between vertices of the solution.

This graph is planar and hence has treewidth O(
√
k).

Plays well with the lower bound: the grid has asymptotically the
worst possible treewidth.

Micha l Pilipczuk ETH2 33/38

Wrapping up

We asked for a scattered set of size k2, so the parameter
blow-up is quadratic.

This gives an f (k) · no(
√
k) lower bound for Planar

d-Scattered Set.

Upper bound: DP on possible separators of the graph of
interaction between vertices of the solution.

This graph is planar and hence has treewidth O(
√
k).

Plays well with the lower bound: the grid has asymptotically the
worst possible treewidth.

Micha l Pilipczuk ETH2 33/38

Application 2: Unit Disk Independent Set

Unit Disk Independent Set

Input: A set of open disks of diameter 1 on the plane,
integer k

Question: Can one select k pairwise disjoint disks?

(Alber, Fiala) Unit Disk Independent Set can be solved in

time nO(
√
k).

Now: Again, by a reduction from Grid Tiling with ≤, we
show that the problem is W[1]-hard and does not admit an

f (k) · no(
√
k) algorithm under ETH.

Micha l Pilipczuk ETH2 34/38

Application 2: Unit Disk Independent Set

Unit Disk Independent Set

Input: A set of open disks of diameter 1 on the plane,
integer k

Question: Can one select k pairwise disjoint disks?

(Alber, Fiala) Unit Disk Independent Set can be solved in

time nO(
√
k).

Now: Again, by a reduction from Grid Tiling with ≤, we
show that the problem is W[1]-hard and does not admit an

f (k) · no(
√
k) algorithm under ETH.

Micha l Pilipczuk ETH2 34/38

Application 2: Unit Disk Independent Set

Unit Disk Independent Set

Input: A set of open disks of diameter 1 on the plane,
integer k

Question: Can one select k pairwise disjoint disks?

(Alber, Fiala) Unit Disk Independent Set can be solved in

time nO(
√
k).

Now: Again, by a reduction from Grid Tiling with ≤, we
show that the problem is W[1]-hard and does not admit an

f (k) · no(
√
k) algorithm under ETH.

Micha l Pilipczuk ETH2 34/38

Reduction for Unit Disk Independent Set

S1,1 :

(1, 1)

(3, 1)

(2, 4)

S2,1 :

(2, 2)

(1, 4)

S3,1 :

(1, 3)

(2, 3)

(3, 3)

S1,2 :

(5, 1)

(1, 4)

(5, 3)

S2,2 :

(3, 1)

(2, 2)

S3,2 :

(1, 1)

(2, 3)

S1,3 :

(1, 1)

(2, 5)

(3, 3)

S2,3 :

(3, 2)

(2, 3)

S3,3 :

(5, 4)

(3, 4)

Micha l Pilipczuk ETH2 35/38

Wrap-up

Pick ε = 1/n10.

For (a, b) ∈ Si ,j , put disk with centre in (i + aε, j + bε).

It is easy to see that disks for (i , j) and (i + 1, j) are disjoint iff
a ≤ a′.

Change of length from shifting by nε vertically will not
compensate for change of length from shifting by ε horizontally.

Hence the choice of disks models the Grid Tiling with ≤
instance.

As we ask for k2 disks, the lower bound follows.

Micha l Pilipczuk ETH2 36/38

Wrap-up

Pick ε = 1/n10.

For (a, b) ∈ Si ,j , put disk with centre in (i + aε, j + bε).

It is easy to see that disks for (i , j) and (i + 1, j) are disjoint iff
a ≤ a′.

Change of length from shifting by nε vertically will not
compensate for change of length from shifting by ε horizontally.

Hence the choice of disks models the Grid Tiling with ≤
instance.

As we ask for k2 disks, the lower bound follows.

Micha l Pilipczuk ETH2 36/38

Wrap-up

Pick ε = 1/n10.

For (a, b) ∈ Si ,j , put disk with centre in (i + aε, j + bε).

It is easy to see that disks for (i , j) and (i + 1, j) are disjoint iff
a ≤ a′.

Change of length from shifting by nε vertically will not
compensate for change of length from shifting by ε horizontally.

Hence the choice of disks models the Grid Tiling with ≤
instance.

As we ask for k2 disks, the lower bound follows.

Micha l Pilipczuk ETH2 36/38

Wrap-up

Pick ε = 1/n10.

For (a, b) ∈ Si ,j , put disk with centre in (i + aε, j + bε).

It is easy to see that disks for (i , j) and (i + 1, j) are disjoint iff
a ≤ a′.

Change of length from shifting by nε vertically will not
compensate for change of length from shifting by ε horizontally.

Hence the choice of disks models the Grid Tiling with ≤
instance.

As we ask for k2 disks, the lower bound follows.

Micha l Pilipczuk ETH2 36/38

Wrap-up

Pick ε = 1/n10.

For (a, b) ∈ Si ,j , put disk with centre in (i + aε, j + bε).

It is easy to see that disks for (i , j) and (i + 1, j) are disjoint iff
a ≤ a′.

Change of length from shifting by nε vertically will not
compensate for change of length from shifting by ε horizontally.

Hence the choice of disks models the Grid Tiling with ≤
instance.

As we ask for k2 disks, the lower bound follows.

Micha l Pilipczuk ETH2 36/38

Wrap-up

Pick ε = 1/n10.

For (a, b) ∈ Si ,j , put disk with centre in (i + aε, j + bε).

It is easy to see that disks for (i , j) and (i + 1, j) are disjoint iff
a ≤ a′.

Change of length from shifting by nε vertically will not
compensate for change of length from shifting by ε horizontally.

Hence the choice of disks models the Grid Tiling with ≤
instance.

As we ask for k2 disks, the lower bound follows.

Micha l Pilipczuk ETH2 36/38

Conclusions

Hardness of 3SAT turned out to be a very robust assumption
for proving lower bounds on time complexity.

Very different lower bounds:

O?(2o(n)), O?(2o(
√
n)) for classical complexity;

O?(2o(k)), O?(2o(
√
k)), O?(2o(k log k)), O?(22o(k)

) for FPT
problems;

f (k) · no(k) and f (k) · no(
√
k) for W[1]-hard problems;

many others that we did not mention.

Optimality program: understand the precise complexity of the
problem by providing matching upper and lower bounds.

Micha l Pilipczuk ETH2 37/38

Conclusions

Hardness of 3SAT turned out to be a very robust assumption
for proving lower bounds on time complexity.

Very different lower bounds:

O?(2o(n)), O?(2o(
√
n)) for classical complexity;

O?(2o(k)), O?(2o(
√
k)), O?(2o(k log k)), O?(22o(k)

) for FPT
problems;

f (k) · no(k) and f (k) · no(
√
k) for W[1]-hard problems;

many others that we did not mention.

Optimality program: understand the precise complexity of the
problem by providing matching upper and lower bounds.

Micha l Pilipczuk ETH2 37/38

Conclusions

Hardness of 3SAT turned out to be a very robust assumption
for proving lower bounds on time complexity.

Very different lower bounds:

O?(2o(n)), O?(2o(
√
n)) for classical complexity;

O?(2o(k)), O?(2o(
√
k)), O?(2o(k log k)), O?(22o(k)

) for FPT
problems;

f (k) · no(k) and f (k) · no(
√
k) for W[1]-hard problems;

many others that we did not mention.

Optimality program: understand the precise complexity of the
problem by providing matching upper and lower bounds.

Micha l Pilipczuk ETH2 37/38

Conclusions

Hardness of 3SAT turned out to be a very robust assumption
for proving lower bounds on time complexity.

Very different lower bounds:

O?(2o(n)), O?(2o(
√
n)) for classical complexity;

O?(2o(k)), O?(2o(
√
k)), O?(2o(k log k)), O?(22o(k)

) for FPT
problems;

f (k) · no(k) and f (k) · no(
√
k) for W[1]-hard problems;

many others that we did not mention.

Optimality program: understand the precise complexity of the
problem by providing matching upper and lower bounds.

Micha l Pilipczuk ETH2 37/38

Conclusions

Hardness of 3SAT turned out to be a very robust assumption
for proving lower bounds on time complexity.

Very different lower bounds:

O?(2o(n)), O?(2o(
√
n)) for classical complexity;

O?(2o(k)), O?(2o(
√
k)), O?(2o(k log k)), O?(22o(k)

) for FPT
problems;

f (k) · no(k) and f (k) · no(
√
k) for W[1]-hard problems;

many others that we did not mention.

Optimality program: understand the precise complexity of the
problem by providing matching upper and lower bounds.

Micha l Pilipczuk ETH2 37/38

Conclusions

Hardness of 3SAT turned out to be a very robust assumption
for proving lower bounds on time complexity.

Very different lower bounds:

O?(2o(n)), O?(2o(
√
n)) for classical complexity;

O?(2o(k)), O?(2o(
√
k)), O?(2o(k log k)), O?(22o(k)

) for FPT
problems;

f (k) · no(k) and f (k) · no(
√
k) for W[1]-hard problems;

many others that we did not mention.

Optimality program: understand the precise complexity of the
problem by providing matching upper and lower bounds.

Micha l Pilipczuk ETH2 37/38

Conclusions

Hardness of 3SAT turned out to be a very robust assumption
for proving lower bounds on time complexity.

Very different lower bounds:

O?(2o(n)), O?(2o(
√
n)) for classical complexity;

O?(2o(k)), O?(2o(
√
k)), O?(2o(k log k)), O?(22o(k)

) for FPT
problems;

f (k) · no(k) and f (k) · no(
√
k) for W[1]-hard problems;

many others that we did not mention.

Optimality program: understand the precise complexity of the
problem by providing matching upper and lower bounds.

Micha l Pilipczuk ETH2 37/38

Exercises

Exercises 14.5–14.9, 14.13

Micha l Pilipczuk ETH2 38/38

