Algebraic techniques in parameterized algorithms, Part III: Group Algebras

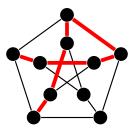
Łukasz Kowalik

University of Warsaw

FPT School, Bedlewo, August 2014

Problem

INPUT: directed graph *G*, integer *k*. QUESTION: Does *G* contain a *k*-vertex path?



 We have seen an O(2^k(kn)^{O(1)})-time algorithm using polynomials of characteristic two, labelled walks, inclusion-exclusion, etc.

- We have seen an $O(2^k(kn)^{O(1)})$ -time algorithm using polynomials of characteristic two, labelled walks, inclusion-exclusion, etc.
- Today: yet another (though earlier) $O(2^k(kn)^{O(1)})$ -time algorithm using **different (even more algebraic)** approach of so-called group algebras.

- We have seen an $O(2^k(kn)^{O(1)})$ -time algorithm using polynomials of characteristic two, labelled walks, inclusion-exclusion, etc.
- Today: yet another (though earlier) $O(2^k(kn)^{O(1)})$ -time algorithm using **different (even more algebraic) approach** of so-called group algebras.
- The lecture is based on works of Koutis (2008) and Williams (2009).

- We have seen an $O(2^k(kn)^{O(1)})$ -time algorithm using polynomials of characteristic two, labelled walks, inclusion-exclusion, etc.
- Today: yet another (though earlier) $O(2^k(kn)^{O(1)})$ -time algorithm using **different (even more algebraic) approach** of so-called group algebras.
- The lecture is based on works of Koutis (2008) and Williams (2009).
- Note that $O(2^k(kn)^{O(1)})$ is still unbeaten for directed graphs.

• Introduce a variable x_v for each vertex $v \in V$.

• Introduce a variable x_v for each vertex $v \in V$.

1.

• Define a polynomial on variables x_v

$$P(\cdots) = \sum_{\substack{k \text{-walk} \\ v_1 v_2 \cdots v_k}} \prod_{i=1}^{\kappa} x_{v_i}.$$

- Introduce a variable x_v for each vertex $v \in V$.
- Define a polynomial on variables x_v

$$P(\cdots) = \sum_{\substack{k \text{-walk} \\ v_1 v_2 \cdots v_k}} \prod_{i=1}^k x_{v_i}.$$

• We can evaluate P using O(k|E|) arithmetic operations (e.g. by DP, see previous lecture)

- Introduce a variable x_v for each vertex $v \in V$.
- Define a polynomial on variables x_v

$$P(\cdots) = \sum_{\substack{k-\text{walk}\\v_1v_2\cdots v_k}} \prod_{i=1}^{\kappa} x_{v_i}.$$

- We can evaluate P using O(k|E|) arithmetic operations (e.g. by DP, see previous lecture)
- paths (good walks) correspond to multilinear monomials in P.

- Introduce a variable x_v for each vertex $v \in V$.
- Define a polynomial on variables x_v

$$P(\cdots) = \sum_{\substack{k \text{-walk} \\ v_1 v_2 \cdots v_k}} \prod_{i=1}^{\kappa} x_{v_i}.$$

- We can evaluate P using O(k|E|) arithmetic operations (e.g. by DP, see previous lecture)
- paths (good walks) correspond to multilinear monomials in P.
- non-path walks (bad walks) correspond to monomials containing x_v^2 for some vertex v.

$$P(\cdots) = \sum_{\substack{k \text{-walk} \\ v_1 v_2 \cdots v_k}} \prod_{i=1}^k x_{v_i}$$

Imagine a new wonderful world in which

- each term corresponding to a bad walk vanishes
- (some) terms corresponding to the good walks stay.

while we evaluate P.

$$P(\cdots) = \sum_{\substack{k \text{-walk} \\ v_1 v_2 \cdots v_k}} \prod_{i=1}^k x_{v_i}$$

Imagine a new wonderful world algebraic structure S such that if we evaluate P over S,

- a non-multilinear monomial evaluates to 0 over some subset S' of S,
- a multilinear monomial evaluates to non-zero over S' (with high probability),

Some algebra: finite fields

Some algebra: fields

Field is a triple $(F, +, \cdot)$, where

- F is a set, + and · are binary operations
- associativity: (a + b) + c = a + (b + c), $(a \cdot b) \cdot c = a \cdot (b \cdot c)$
- commutativity: a + b = b + a, $a \cdot b = b \cdot a$
- distributivity: $a \cdot (b + c) = a \cdot b + a \cdot c$.
- additive identity: $\exists 0 \in F \text{ s.t. } 0 + a = a$.
- multiplicative identity: $\exists 1 \in F \text{ s.t. } \forall a \in F \setminus \{0\} : 1 \cdot a = a$.
- additive inverses: $\forall a \in F \exists b \in F \text{ s.t. } a + b = 0;$
- multiplicative inverses: $\forall a \in F \setminus \{0\} \exists b \in F \text{ s.t. } a \cdot b = 1;$

Some familiar (infinite) fields: \mathbb{Q} , \mathbb{R} , \mathbb{C} .

Some algebra: finite fields

- For every prime *p* and integer *k* there is exactly one (up to isomorphism) field of size *p^k*.
- We denote this field by $GF(p^k)$ (GF = Galois Field).

• For prime p, the field GF(p) is the familiar set $\{0, \ldots, p-1\}$ with addition and multiplication modulo p.

$$GF(2): \begin{array}{c|c} + & 0 & 1 \\ \hline 0 & 0 & 1 \\ \hline 1 & 1 & 0 \end{array} \quad \begin{array}{c|c} \cdot & 0 & 1 \\ \hline 0 & 0 & 0 \\ \hline 1 & 0 & 1 \end{array}$$

Some algebra: finite fields of size p^k

- Elements of GF(p^k) are univariate polynomials of degree at most k 1 with coefficients from GF(p).
- Choose an irreducible univariate polynomial f of degree k with coefficients from GF(p) (it always exists!)
- Addition and multiplication is the usual addition and multiplication of polynomials plus taking modulo *f*.
- Corollary: $GF(p^k)$ is of characteristic p, i.e. $\forall a \in GF(p^k)$,

$$\underbrace{a+a+\ldots+a}_{a+a+\ldots+a}=0.$$

p times

Example:
$$GF(2^2) = \{0, 1, x, x+1\}$$
. Let $f(x) = x^2 + x + 1$.

$$\begin{aligned} x + (x + 1) &= (1 + 1)x + 1 = 1 \\ x \cdot (x + 1) &= x^2 + x \mod (x^2 + x + 1) = x^2 + x + 1 + 1 \mod (x^2 + x + 1) = 1. \end{aligned}$$

Some algebra: finite fields of size p^k

- Elements of GF(p^k) are univariate polynomials of degree at most k 1 with coefficients from GF(p).
- Choose an irreducible univariate polynomial f of degree k with coefficients from GF(p) (it always exists!)
- Addition and multiplication is the usual addition and multiplication of polynomials plus taking modulo *f*.

• Corollary: $GF(p^k)$ is of characteristic p, i.e. $\forall a \in GF(p^k)$, $\underbrace{a+a+\ldots+a}_{i=0} = 0.$

p times

Example: $GF(2^2) = \{0, 1, x, x + 1\}$. Let $f(x) = x^2 + x + 1$.

+	0	1	x	x+1		0	1	x	x+1
0	0	1	x	x+1	0	0	0	0	0
1	1	0	x+1	x			1		
X	X	x+1	0	1	x	0	X	x+1	1
x+1	x+1	x	1	0	x+1	0	x+1	1	x

- Assume p = O(1).
- Addition: k additions in GF(p), time O(k).
- Multiplication: multiply polynomials, perform modulo f.
 - Naively: time $O(k^2)$,
 - Using FFT: time $O(k \log k \log \log k)$.

Some algebra: group algebras

< 17 ▶ <

э

Group is a pair (G, \cdot) , where

- G is a set, \cdot is a binary operation
- associativity: $(a \cdot b) \cdot c = a \cdot (b \cdot c)$
- identity: $\exists 1 \in G \text{ s.t. } \forall a \in G : 1 \cdot a = a.$
- inverses: $\forall a \in G \exists b \in G \text{ s.t. } a \cdot b = 1;$

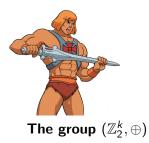
Some familiar groups: $(\mathbb{Z}, +)$, $(\mathbb{Q} \setminus \{0\}, \cdot)$, $(\mathbb{Z}_n, +)$. $\mathbb{Z}_n = \{0, \dots, n-1\}$, with addition modulo n.

The group for today

The first hero of today is.....

The group for today

The first hero of today is.....



The group for today

The first hero of today is.....

The group
$$(\mathbb{Z}_{2}^{k}, \oplus)$$

 $\mathbb{Z}_{2}^{k} = \{(a_{1}, \dots, a_{k}) : a_{i} \in \mathbb{Z}_{2}\}$
 \oplus is the pointwise addition in \mathbb{Z}_{2} .
 $(0, 1, 1, 0) \oplus (0, 1, 0, 1) = (0, 0, 1, 1).$
 $(0, 1, 1, 0)^{-1} = (1, 0, 0, 1)$
We denote $W_{0} = (0, 0, \dots, 0).$

Some algebra: group algebra

Group algebra F[G] is a triple $(S, +, \cdot)$, where • F is a field with operations $+_F$ and \cdot_F (or simply $+, \cdot$), • G is a group with operation \cdot_G (or simply \cdot), • $S = \{\sum_{g \in G} a_g g : \forall g \in G \ a_g \in F\}$, i.e. S is the set of all **formal sums** over all elements of G with coefficients from F (note: $|S| = |F|^{|G|}$) • $(\sum_{g \in G} a_g g) + (\sum_{g \in G} b_g g) = \sum_{g \in G} (a_g +_F b_g)g$ • $(\sum_{g \in G} a_g g) + (\sum_{g \in G} b_g g) = \sum_{g \in G} (a_g +_F b_g)g$

$$(\sum_{g \in G} a_g g) \cdot (\sum_{g \in G} b_g g) = \sum_{\substack{g \in G \ h \in G}} (a_g \cdot_F b_h) g \cdot_G h$$

Some algebra: group algebra

Group algebra F[G] is a triple $(S, +, \cdot)$, where • F is a field with operations $+_F$ and \cdot_F (or simply $+, \cdot$), • G is a group with operation \cdot_G (or simply \cdot), • $S = \{\sum_{g \in G} a_g g : \forall g \in G a_g \in F\},\$ i.e. S is the set of all **formal sums** over all elements of G with coefficients from F (note: $|S| = |F|^{|G|}$) • $(\sum a_g g) + (\sum b_g g) = \sum (a_g + b_g)g$ $g \in G$ $g \in G$ $g \in G$ $(\sum_{g \in G} a_g g) \cdot (\sum_{g \in G} b_g g) = \sum_{\substack{g \in G \\ h \in G}} (a_g \cdot_F b_h) \cdot_g \cdot_G h =$ $\sum_{g \in G} \left(\sum_{g_1 \cdot_G g_2 = g} (a_{g_1} \cdot_F b_{g_2}) \right) g = \sum_{g \in G} \left(\sum_{g_1 \in G} (a_{g_1} \cdot_F b_{g_1^{-1}g}) \right) g$ **Group algebra** F[G] is a triple $(S, +, \cdot)$, where

- F is a field with operations $+_F$ and \cdot_F (or simply $+, \cdot$),
- G is a group with operation \cdot_G (or simply \cdot),
- S = {∑_{g∈G} a_gg : ∀g ∈ G a_g ∈ F},
 i.e. S is the set of all formal sums over all elements of G with coefficients from F (note: |S| = |F|^{|G|})

•
$$(\sum_{g \in G} a_g g) + (\sum_{g \in G} b_g g) = \sum_{g \in G} (a_g + b_g)g$$

• $(\sum_{g \in G} a_g g) \cdot (\sum_{g \in G} b_g g) = \sum_{g \in G} \left(\sum_{g_1 \in G} (a_{g_1} \cdot b_{g_1}) \right) g$

The group algebra for today

The main heroes of today are.....

The group algebra for today

The main heroes of today are.....

The group algebra $GF(2^{\ell})[\mathbb{Z}_2^k]$

Example: $GF(2^2)[\mathbb{Z}_2^3]$

Recall that $GF(2^2) = \{0, 1, x, x + 1\}$; irreducible polynomial: $x^2 + x + 1$. Elements of $GF(2^2)[\mathbb{Z}_2^3]$ are of the form $\sum_{g \in \mathbb{Z}_2^3} a_g g$, where $a_g \in GF(2^2)$.

 $\sum_{g \in \mathbb{Z}_2^3} 0g = 0$ is the additive identity. $1 \cdot W_0 = W_0$ is the multiplicative identity (note that $W_0 \neq 0$).

$$\begin{pmatrix} \begin{bmatrix} 0\\0\\0 \end{bmatrix} + (1+x) \begin{bmatrix} 0\\1\\0 \end{bmatrix} \end{pmatrix} + \begin{pmatrix} \begin{bmatrix} 0\\1\\0 \end{bmatrix} + x \begin{bmatrix} 0\\1\\1 \end{bmatrix} + \begin{bmatrix} 1\\1\\1 \end{bmatrix} \end{pmatrix} = \begin{bmatrix} 0\\0\\0 \end{bmatrix} + x \begin{bmatrix} 0\\1\\0 \end{bmatrix} + x \begin{bmatrix} 0\\1\\0 \end{bmatrix} + x \begin{bmatrix} 0\\1\\1 \end{bmatrix} + \begin{bmatrix} 1\\1\\1 \end{bmatrix}$$

Example: $GF(2^2)[\mathbb{Z}_2^3]$

Recall that $GF(2^2) = \{0, 1, x, x + 1\}$; irreducible polynomial: $x^2 + x + 1$.

Elements of $GF(2^2)[\mathbb{Z}_2^3]$ are of the form $\sum a_g g$, where $a_g \in GF(2^2)$. $g \in \mathbb{Z}_2^3$ $\left(\left| \begin{array}{c} 0\\0\\0 \end{array} \right| + x \left| \begin{array}{c} 0\\1\\0 \end{array} \right| \right) \cdot x \left[\begin{array}{c} 1\\1\\1 \end{array} \right] =$ $(1 \cdot x) \left(\left| \begin{array}{c} 0 \\ 0 \\ 0 \end{array} \right| \oplus \left| \begin{array}{c} 1 \\ 1 \\ 1 \end{array} \right| \right) + (x \cdot x) \left(\left| \begin{array}{c} 0 \\ 1 \\ 0 \end{array} \right| \oplus \left| \begin{array}{c} 1 \\ 1 \\ 1 \end{array} \right| \right) =$ $x \begin{vmatrix} 1\\1\\1 \end{vmatrix} + (x+1) \begin{bmatrix} 1\\0\\1 \end{vmatrix}.$

Why $GF(2^{\ell})[\mathbb{Z}_2^k]$ is cool?

Vanishing Lemma (Koutis)

For every
$$v \in \mathbb{Z}_2^k$$
, $(W_0 + v)^2 = 0$ in $GF(2^\ell)[\mathbb{Z}_2^k]$.

Proof

$$(W_0 + v)^2 = (W_0 \oplus W_0) + (W_0 \oplus v) + (v \oplus W_0) + (v \oplus v)$$

= $W_0 + v + v + W_0$
= $(1+1)W_0 + (1+1)v$
= $0W_0 + 0v$
= $0.$

Image: Image:

Why $GF(2^{\ell})[\mathbb{Z}_2^k]$ is cool?

Vanishing Lemma (Koutis)

For every
$$v \in \mathbb{Z}_2^k$$
, $(W_0 + v)^2 = 0$ in $GF(2^\ell)[\mathbb{Z}_2^k]$.

Algorithm for LONGEST PATH

• Let
$$P(x_1,\ldots,x_n) = \sum_{\substack{k-\text{walk}\\v_1v_2\cdots v_k}} \prod_{i=1}^n x_{v_i}$$

2 Pick vectors $v_1, \ldots, v_n \in \mathbb{Z}_2^k$ uniformly at random.

3 Answer YES iff $P(W_0 + v_1, ..., W_0 + v_n) \neq 0$.

• By Vanishing Lemma, if there is no k-path, we always get NO.

1.

• We need to show that otherwise we get YES with good probability, i.e., that multilinear monomials do not vanish w.h.p.

Łukasz Kowalik (UW)

Independency Lemma

If $v_1, \ldots, v_k \in \mathbb{Z}_2^k$ are linearly independent over GF(2), then

$$\prod_{i=1}^{k} (W_0 + v_i) = \begin{cases} \sum_{v \in \mathbb{Z}_2^k} v & \text{if } v_1, \dots, v_k \text{ are linearly independent over } GF(2) \\ 0 & \text{otherwise} \end{cases}$$

Behaviour of multilinear monomials

Independency Lemma

If
$$v_1, \ldots, v_k \in \mathbb{Z}_2^k$$
 are linearly independent over $GF(2)$, then

$$\prod_{i=1}^{k} (W_0 + v_i) = \begin{cases} \sum_{v \in \mathbb{Z}_2^k} v & \text{if } v_1, \dots, v_k \text{ are linearly independent over } GF(2) \\ 0 & \text{otherwise} \end{cases}$$

Proof

Assume independence. (We skip the proof for the dependent case here.)

•
$$\prod_{i=1}^{k} (W_0 + v_i) = \sum_{S \subseteq [k]} \bigoplus_{j \in S} v_j.$$

• $\{v_1, \dots, v_k\}$ is a basis of \mathbb{Z}_2^k , so $\{\bigoplus_{j \in S} v_j : S \subseteq [k]\} = \mathbb{Z}_2^k.$

• Hence, in the sum there are **all** the vectors from \mathbb{Z}_2^k .

Independency Lemma

If $v_1, \ldots, v_k \in \mathbb{Z}_2^k$ are linearly independent over GF(2), then

$$\prod_{i=1}^{k} (W_0 + v_i) = \begin{cases} \sum_{v \in \mathbb{Z}_2^k} v & \text{if } v_1, \dots, v_k \text{ are linearly independent over } GF(2) \\ 0 & \text{otherwise} \end{cases}$$

Corollary

For a path y_1, \ldots, y_k , if the random vectors v_{y_1}, \ldots, v_{y_k} are linearly independent, then the term $\prod_{i=1}^k (W_0 + v_{y_i})$ evaluates to $\sum_{v \in \mathbb{Z}_2^k} v \neq 0$.

Question: What is the probability that k random vectors $v_1, \ldots, v_k \in \mathbb{Z}_2^k$ are linearly independent over GF(2)?

Independency Probability Bound

Random vectors $v_1, \ldots, v_k \in \mathbb{Z}_2^k$ are linearly independent over GF(2) with probability at least e^{-2} .

Proof.

How many linearly independent sequences of k vectors are there?

- Choose v_1 in $2^k 1$ ways (avoid W_0),
- Choose v_2 in $2^k 2$ ways (avoid W_0, v_1),
- Choose v_3 in $2^k 2^2$ ways (avoid span($\{v_1, v_2\}$)),

• Choose
$$v_k$$
 in $2^k - 2^{k-1}$ ways (avoid span($\{v_1, \ldots, v_{k-1}\}$)),

There are $\prod_{i=0}^{k-1} (2^k - 2^i)$ linearly independent sequences of k vectors.

Independency Probability Bound

Random vectors $v_1, \ldots, v_k \in \mathbb{Z}_2^k$ are linearly independent over GF(2) with probability at least e^{-2} .

Proof.

There are $\prod_{i=0}^{k-1} (2^k - 2^i)$ linearly independent sequences of k vectors.

$$\Pr = \frac{\prod_{i=0}^{k-1} (2^k - 2^i)}{2^{k^2}} = \frac{\prod_{i=0}^{k-1} 2^k (1 - 2^i/2^k)}{2^{k^2}} = \prod_{i=0}^{k-1} (1 - 2^i/2^k)$$

Apply the inequality $1 - x \ge e^{-2x}$ for $x \in [0, \frac{1}{2}]$:

$$\Pr \ge e^{-2\sum_{i=0}^{k-1} 2^i/2^k} = e^{-2(2^k-1)/2^k} \ge e^{-2}.$$

Łukasz Kowalik (UW)

Assume there is a k-path y_1, \ldots, y_k (if more, take any.)

Corollary $\prod_{i=1}^{k} (W_0 + v_{y_i}) = \sum_{v \in \mathbb{Z}_2^k} v \text{ with probability at least } e^{-2}.$

Assume there is a k-path y_1, \ldots, y_k (if more, take any.)

Corollary
$$\prod_{i=1}^{k} (W_0 + v_{y_i}) = \sum_{v \in \mathbb{Z}_2^k} v \text{ with probability at least } e^{-2}.$$

Question

Does it mean that with probability at least e^{-2} P evaluates to non-zero?

Assume there is a k-path y_1, \ldots, y_k (if more, take any.)

$$\begin{split} & \underset{i=1}{\overset{k}{\prod}}(W_0+v_{y_i}) = \sum_{v\in\mathbb{Z}_2^k} v \text{ with probability at least } e^{-2}. \end{split}$$

Question

Does it mean that with probability at least e^{-2} P evaluates to non-zero?

Answer

NO! The term $\sum_{v \in \mathbb{Z}_2^k} v$ may cancel with identical terms originating from other multilinear monomials.

How can we prevent the cancelling?

Łukasz Kowalik (UW)

The final trick

Hence, for some k-paths P_1, \ldots, P_r , $r \ge 0$, $P_j = y_{j,1}, \cdots, y_{j,k}$ we have $P'(W_0 + v_1, \ldots, w_{e_{|E|}}W_0) = \left(\sum_{j=1}^r \prod_{i=1}^{k-1} w_{y_{j,i}y_{j,i+1}}\right) \sum_{v \in \mathbb{Z}_2^k} v$, and our favourite path y_1, \ldots, y_k is among P_1, \ldots, P_r with prob. $\ge e^{-2}$.

For some k-paths
$$P_1, \ldots, P_r$$
, $r \ge 0$, $P_j = y_{j,1}, \cdots, y_{j,k}$ we have
 $P'(W_0 + v_1, \ldots, w_{e_{|E|}}W_0) = \left(\sum_{j=1}^r \prod_{i=1}^{k-1} w_{y_{j,i}y_{j,i+1}}\right) \sum_{v \in \mathbb{Z}_2^k} v$, and our favourite
path y_1, \ldots, y_k is among P_1, \ldots, P_r with prob. $\ge e^{-2}$.

Łukasz Kowalik (UW)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

3

For some k-paths
$$P_1, \ldots, P_r$$
, $r \ge 0$, $P_j = y_{j,1}, \cdots, y_{j,k}$ we have
 $P'(W_0 + v_1, \ldots, w_{e_{|E|}}W_0) = \left(\sum_{j=1}^r \prod_{i=1}^{k-1} w_{y_{j,i}y_{j,i+1}}\right) \sum_{v \in \mathbb{Z}_2^k} v$, and our favourite
path y_1, \ldots, y_k is among P_1, \ldots, P_r with prob. $\ge e^{-2}$.
Consider the polynomial $Q(w_{e_1}, \ldots, w_{e_{|E|}}) = \sum_{j=1}^r \prod_{i=1}^{k-1} w_{y_{j,i}y_{j,i+1}}$.

Schwartz-Zippel Lemma

Let $p(x_1, x_2, ..., x_n)$ be a non-zero polynomial of degree at most d over a field F and let S be a finite subset of F. Sample values $a_1, a_2, ..., a_n$ from S uniformly at random. Then, $Pr[p(a_1, a_2, ..., a_n)] = 0] \le d/|S|$.

If $\ell > \lceil \log k \rceil + 1$, then $Pr[Q(w_{e_1}, \dots, w_{e_{|E|}}) \neq 0] \geq \frac{1}{2}$.

Theorem

- If there is no k-path, $P'(W_0 + v_1, \ldots, w_{e_{|E|}}W_0)$ evaluates to 0.
- If there is a k-path, P'(W₀ + v₁,..., w<sub>e_{|E|}W₀) evaluates to non-zero with probability at least 1/(2e²).
 </sub>

Theorem

- If there is no k-path, $P'(W_0 + v_1, \dots, w_{e_{|E|}}W_0)$ evaluates to 0.
- If there is a k-path, P'(W₀ + v₁,..., w<sub>e_{|E|}W₀) evaluates to non-zero with probability at least 1/(2e²).
 </sub>

P' can be evaluated using O(mk) arithmetic operations in $GF(2^{\ell})[\mathbb{Z}_2^k]$.

Theorem

- If there is no k-path, $P'(W_0 + v_1, \dots, w_{e_{|E|}}W_0)$ evaluates to 0.
- If there is a k-path, P'(W₀ + v₁,..., w<sub>e_{|E|}W₀) evaluates to non-zero with probability at least 1/(2e²).
 </sub>

P' can be evaluated using O(mk) arithmetic operations in $GF(2^{\ell})[\mathbb{Z}_2^k]$.

Have we just proved RP = NP?

Theorem

- If there is no k-path, $P'(W_0 + v_1, \dots, w_{e_{|E|}}W_0)$ evaluates to 0.
- If there is a k-path, P'(W₀ + v₁,..., w<sub>e_{|E|}W₀) evaluates to non-zero with probability at least 1/(2e²).
 </sub>

P' can be evaluated using O(mk) arithmetic operations in $GF(2^{\ell})[\mathbb{Z}_2^k]$.

Have we just proved RP = NP?

Not yet, what is the time complexity of $GF(2^{\ell})[\mathbb{Z}_2^k]$ arithmetic?

$GF(2^{\ell})[\mathbb{Z}_2^k]$ arithmetic

- Elements of $GF(2^{\ell})[\mathbb{Z}_2^k]$ are of form $\sum_{g\in\mathbb{Z}_2^k}a_gg$
- We can represent them by vectors of 2^k elements from $GF(2^\ell)$.
- Addition takes $O(2^k)$ additions in $GF(2^\ell)$ (in time $O(\ell) = O(\log k)$)
- Multiplication done naively takes $O(4^k)$ multiplications in $GF(2^\ell)$ (in time $O(\ell \log \ell \log \log \ell) = O(\log k (\log \log k)^2)$
- We can implement multiplication in an FFT style in O(2^kk) time and O(2^kk) space.

Theorem (Williams 2009)

The algorithm we have just seen works in $O(2^k | E| k \log k (\log \log k)^2)$ time and $O(2^k k)$ space.

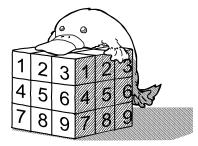
Note: Multiplication can be done in polynomial space as well (Koutis).

We have seen applications of three algebraic tools:

- Inclusion-Exclusion,
- Polynomials over finite fields of characteristic two,
- Group algebras.

A common theme:

- Relax your constraints (walks instead of paths, cycle covers instead of Hamiltonian cycles, etc...)
- Some unwanted ("bad") objects appear
- Using an algebraic tool, make the bad objects disappear, so that the good objects stay.



Thank you!

Image: A matrix and a matrix

э