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(directed) LONGEST PATH problem revisited.

Problem

INPUT: directed graph G, integer k.
QUESTION: Does G contain a k-vertex path?
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(directed) LONGEST PATH problem revisited.

Why LONGEST PATH again?

o We have seen an O(2%(kn)°())-time algorithm using polynomials of
characteristic two, labelled walks, inclusion-exclusion, etc.
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(directed) LONGEST PATH problem revisited.

Why LONGEST PATH again?

o We have seen an O(2%(kn)°())-time algorithm using polynomials of
characteristic two, labelled walks, inclusion-exclusion, etc.

o Today: yet another (though earlier) O(2%(kn)°™)-time algorithm
using different (even more algebraic) approach of so-called group
algebras.

@ The lecture is based on works of Koutis (2008) and Williams (2009).
o Note that O(2%(kn)°™M) is still unbeaten for directed graphs.
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A new approach

@ Introduce a variable x, for each vertex v € V.
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A new approach

@ Introduce a variable x, for each vertex v € V.

@ Define a ponnomiaI on variables x,

P(---)= Z HXV:

k- walk i=1
ViV -t Vi
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A new approach

@ Introduce a variable x, for each vertex v € V.
@ Define a polynomial on variables x,

k
P )= > J]x

k-walk =1
ViV -t Vi

@ We can evaluate P using O(k|E|) arithmetic operations (e.g. by DP,
see previous lecture)
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A new approach

@ Introduce a variable x, for each vertex v € V.

@ Define a polynomial on variables x,

k
P )= > J]x

k-walk =1
ViV -t Vi

@ We can evaluate P using O(k|E|) arithmetic operations (e.g. by DP,
see previous lecture)

@ paths (good walks) correspond to multilinear monomials in P.

@ non-path walks (bad walks) correspond to monomials containing x2
for some vertex v.
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Imagine...

k
P(---)= Z Hxv,-

k-walk =1
Viva - Vg

Imagine a new wonderful world in which

@ each term corresponding to a bad walk
vanishes

@ (some) terms corresponding to the good
walks stay.

while we evaluate P.
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Imagine...

k
P(--) = Z wa

k-walk i=1
VIV2 - Vi

Imagine a new wonderful werld algebraic struc-
ture S such that if we evaluate P over S,

@ a non-multilinear monomial evaluates to 0
over some subset S’ of S,

@ a multilinear monomial evaluates to
non-zero over S’ (with high probability),
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Some algebra: finite fields
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Some algebra: fields

Field is a triple (F,+, ), where

@ F is a set, + and - are binary operations
associativity: (a+b)+c=a+(b+c), (a-b)-c=a-(b-c)
commutativity: a+b=b+a, a-b=b-a
distributivity: a-(b+c)=a-b+a-c.
additive identity: 30€ Fsit. 0+a=a.
multiplicative identity: 31 € Fs.it. Yae F\{0}: 1-a=a.
additive inverses: Vae F3dbe Fst. a+ b=0;

e multiplicative inverses: Vaec F\ {0} 3be Fst. a-b=1,
Some familiar (infinite) fields: Q, R, C.
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Some algebra: finite fields

@ For every prime p and integer k there is exactly one (up to
isomorphism) field of size p*.
o We denote this field by GF(p*) (GF = Galois Field).

=

e For prime p, the field GF(p) is the familiar set {0,...,p — 1} with
addition and multiplication modulo p.

+]of1 - ]of1
GF(2: 0 |01
1[1]0 1]0]1

o
o
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Some algebra: finite fields of size p¥

o Elements of GF(p¥) are univariate polynomials of degree at most
k — 1 with coefficients from GF(p).
@ Choose an irreducible univariate polynomial f of degree k with
coefficients from GF(p) (it always exists!)
@ Addition and multiplication is the usual addition and multiplication of
polynomials plus taking modulo f.
o Corollary: GF(pX) is of characteristic p, i.e. Ya € GF(p¥),
at+a+..+a=0.
p times
Example: GF(22) = {0,1,x,x + 1}. Let f(x) = x> + x + 1.
x+(x+1)=1+1)x+1=1
x-(x+1) =x>+xmod (x2+x+1) = x> +x+1+1mod (x> +x+1) = 1.
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Some algebra: finite fields of size p¥

o Elements of GF(p¥) are univariate polynomials of degree at most
k — 1 with coefficients from GF(p).

@ Choose an irreducible univariate polynomial f of degree k with
coefficients from GF(p) (it always exists!)

o Addition and multiplication is the usual addition and multiplication of
polynomials plus taking modulo f.

o Corollary: GF(p¥) is of characteristic p, i.e. Va € GF(p¥),
at+a+..+a=0.

p times

Example: GF(22) = {0,1,x,x + 1}. Let f(x) = x> + x + 1.

+ 0 1 X x+1 0 1 X x+1
0 0 1 X x+1 0 0 0 0 0

1 1 0 x+1 X 1 0 1 X x+1
X X x+1 0 1 X 0 X x+1 1
x+1 | x+1 X 1 0 x+1]0]| x+1 1 X
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Finite fields of size pX: computational complexity

@ Assume p = O(1).

e Addition: k additions in GF(p), time O(k).

@ Multiplication: multiply polynomials, perform modulo f.
o Naively: time O(k?),
e Using FFT: time O(k log k log log k).
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Some algebra: group algebras
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Some algebra: group

Group is a pair (G, -), where
@ G is a set, - is a binary operation
@ associativity: (a-b)-c=a-(b-¢)
@ identity: 31 € Gst.Vae G: 1-a=a.
@ inverses: Vae Gdbe Gst. a-b=1;

Some familiar groups: (Z,+), (Q\ {0},-), (Zn,+).
Zn =1{0,...,n— 1}, with addition modulo n.
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The group for today

The first hero of today is.....
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The first hero of today is.....

The group (Z5, @)
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The group for today

The first hero of today is.....

The group (Z5, @)
75 ={(a1,.-,ak) : ai € Lo}

@ is the pointwise addition in Z.

(0,1,1,0)®(0,1,0,1) = (0,0,1,1).
(0,1,1,0)7 = (1,0,0,1)
We denote Wy = (0,0,...,0).
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Some algebra: group algebra

Group algebra F[G] is a triple (S, +, ), where
e F is a field with operations +£ and -¢ (or simply +, -),
e G is a group with operation - (or simply -),
© S={> ,cc%8g : Vg€ GageF}
i.e. S is the set of all formal sums over all elements of G with
coefficients from F (note: |S| = |F|I¢])

(Z agg) + (Z bgg) = Z(ag +F bg)g

geaG geaG geiG
[~
(D" az8) - (O bgg) = (ag-Fbn) g-ch
geG geG geG

heG
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Some algebra: group algebra

Group algebra F[G] is a triple (S, +, ), where
@ F is a field with operations +¢ and -g (or simply +, -),
e G is a group with operation - (or simply -),

© S={>;cc%8 : Vg€ G ag€EF}
i.e. S is the set of all formal sums over all elements of G with

coefficients from F (note: |S| = |F|I])

(Z agg) + (Z bgg) = Z(ag +F bg)g

geG geai geaG
° (D_28) (D_beg) =D | D_(am rby,) |6
geiG geG geG \g1€G
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The group algebra for today

The main heroes of today are.....
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The group algebra for today

k

The group algebra GF(2")[Z4]
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Example: GF(22)[Z3]

Recall that GF(22) = {0, 1, x, x + 1}; irreducible polynomial: x? + x + 1.

Elements of GF(22)[Z3] are of the form Z agg, where a; € GF(22).
gEeZ3

dezg 0g = 0 is the additive identity.
1- Wy = Wy is the multiplicative identity (note that Wy # 0).

0 0 0 0 1
0| +(1+x)|1 +
0 0
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Example: GF(22)[Z3]

Recall that GF(22) = {0, 1, x, x + 1}; irreducible polynomial: x2 + x + 1.

Elements of GF(22)[Z3] are of the form Z agg, Where a, € GF(22).

gEeZ3
0
(1
0

—+ X

) -[1)

(1-x) 0Ol |1 + (x - x) 1o 1 =
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Why GF(2)[ZX] is cool?

Vanishing Lemma (Koutis)
For every v € Z, (Wp + v)? = 0 in GF(2°)[Z4].

(Wo+v)2=(Wo & Wo) + (Wo@v) + (v Wo) + (v v)
= Wo + v + v —+ Wo
=(1+1)Wo+ (1 +1)v
=0Wp + Ov
=0.
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Why GF(2)[ZX] is cool?

Vanishing Lemma (Koutis)
For every v € Z&, (Wp + v)? = 0 in GF(2°)[Z4].

Algorithm for LONGEST PATH

k
Q Let P(x1,...,xn) = Z Hx\,i

k-walk i=1
ViV - - Vg
@ Pick vectors vq,...,v, € Z’Q‘ uniformly at random.

© Answer YES iff P(Wo + vi,..., Wy + v,) #0.

@ By Vanishing Lemma, if there is no k-path, we always get NO.

@ We need to show that otherwise we get YES with good probability,
i.e., that multilinear monomials do not vanish w.h.p.
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Behaviour of multilinear monomials

Independency Lemma

If vi,..., vk € ZX are linearly independent over GF(2), then

K Z v if vi,..., vk are linearly independent over GF(2)
H(W0+Vi) = q vezk

i=1 0 otherwise
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Behaviour of multilinear monomials

Independency Lemma

If vi,..., vk € ZX are linearly independent over GF(2), then

k Z v if vi,..., vk are linearly independent over GF(2)
H(W0+Vi) = q vezk

i=1 0 otherwise

Assume independence. (We skip the proof for the dependent case here.)
k
o [Io+v) = > Dy
i=1 SC[K] jeS
o {vi,..., v} is a basis of Z%, so {@vj . S C[K]} =Z5.
Jjes
@ Hence, in the sum there are all the vectors from Zé.

v
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Behaviour of multilinear monomials

Independency Lemma

If vi,..., vk € ZX are linearly independent over GF(2), then
K Z v if vi,..., vk are linearly independent over GF(2)
H(W0+Vi) = q vezk
i=1 0 otherwise
Corollary
For a path y1, ..., yk, if the random vectors vy, ..., v, are linearly
k
independent, then the term H(Wo + vy,) evaluates to Z v #0.
i=1 vezZk
Question: What is the probability that k random vectors vy, ..., v, € Z&

are linearly independent over GF(2)?
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Chances of linear independence

Independency Probability Bound

Random vectors vi, ..., vk € Z5 are linearly independent over GF(2) with
probability at least e 2.

Proof.

How many linearly independent sequences of k vectors are there?

| A

@ Choose v; in 2K — 1 ways (avoid W),
@ Choose v, in 2K — 2 ways (avoid Wo, v1),
o Choose v3 in 2K — 22 ways (avoid span({vy, v»})),

o Choose v in 25 — 2k=1 ways (avoid span({vi,. .., vk_1})),

k—1
There are H(2k — 2') linearly independent sequences of k vectors.
i=0

v
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Chances of linear independence

Independency Probability Bound

Random vectors vy, ..., v, € Z’z‘ are linearly independent over GF(2) with

probability at least e~2.

Proof.

X
=

There are H(2k — 2') linearly independent sequences of k vectors.
i=0

k—1

o — Hf'(:_ol(zk — 2i) _ Hf(:_ol 2k(1 — 2i/2k) _ H(l - 2i/2k)
i=0

2K 2K

Apply the inequality 1 — x > e=2* for x € [0, %]

Pr> efzzf;(} 20/2k _ o—2(2¢-1)/2* > o2,

— y
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Multilinear monomials, cont'd.

Assume there is a k-path yi,...,yx (if more, take any.)

k
JI(Wo + w,) = > v with probability at least e=2.

i=1 vezk
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Multilinear monomials, cont'd.

Assume there is a k-path yi,...,yx (if more, take any.)

k
JI(Wo + w,) = > v with probability at least e=2.

i=1 vezk

Does it mean that with probability at least e~ P evaluates to non-zero?
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Multilinear monomials, cont'd.

Assume there is a k-path yi,...,yx (if more, take any.)

k
JI(Wo + w,) = > v with probability at least e=2.

i=1 vezk

Does it mean that with probability at least e~ P evaluates to non-zero?

NO! The term Z v may cancel with identical terms originating from

VEZ’Z‘
other multilinear monomials.

How can we prevent the cancelling?
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Multilinear monomials, cont'd.

The final trick

O Pick |E| elements {w, : e € E} C GF(2") uniformly at random.

@ Pick vectors vq,...,v, € Z’Qf uniformly at random.
Q Let P'(x y) Z HXV, HYV,V,+1
k-walk =1 i=1
ViV -t Vg

O Answer YES iff P(Wo + va,..., Wo + v, we, W, . .., We g, Wop) # 0.

v

Hence, for some k-paths Py, ... P,, r>0, Pi=y1, -,y k we have
r
P'(Wo + wp,.. -y Wee Wo) = Z H Wy, iy i1 Z v, and our favourite
j=1i=1 vezs

path yi, ...,y is among Py, ..., P, with prob. > e™2
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Multilinear monomials, cont'd.

For some k-paths P1,...,P,, r > 0 P

=yj1," ", Yk we have
,
P'(Wo + wp,.. -y Weye Wo) = Z H Wy, iy i1 Z v, and our favourite
j=1i=1 vezs
path yi, ...,y is among Py, ..., P, with prob. > e™2
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Multilinear monomials, cont'd.

For some k-paths Py,...,P,, r> 0 P- =Yj1," ", Yjk We have

.

P'(Wo + wp,.. -y Weye Wo) = Z H Wy, iy i1 Z v, and our favourite
j=1i=1 vezs

path yi, ...,y is among Py, ..., P, with prob. > e™2

,
Consider the polynomial Q(we,, ..., We, ) = E H Wy, iy is1-
j=1 i=1

Schwartz-Zippel Lemma

Let p(x1,x2,...,X,) be a non-zero polynomial of degree at most d over a
field F and let S be a finite subset of F. Sample values as, ay, ..., a, from
S uniformly at random. Then, Pr[p(a1, a2,...,a,)] =0] < d/|S|.

If £ > [log k] + 1, then PF[Q(Wel,...,WelE‘) #0] > %
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Conclusion

o If there is no k-path, P'(Wp + v1,. .., Weg, Wo) evaluates to 0.

o If there is a k-path, P"(Wp + v1,.. ., We g, Wp) evaluates to non-zero
with probability at least 1/(2e?).
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with probability at least 1/(2e?).

P’ can be evaluated using O(mk) arithmetic operations in GF(2°)[Z5].
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Conclusion

o If there is no k-path, P'(Wp + v1,. .., Weg, Wo) evaluates to 0.

o If there is a k-path, P"(Wp + v1,.. ., We g, Wp) evaluates to non-zero
with probability at least 1/(2e?).

P’ can be evaluated using O(mk) arithmetic operations in GF(2°)[Z5].

Have we just proved RP = NP?

e oF CC oo

o

& A N
e

Not yet, what is the time complexity of GF(2°)[Z5] arithmetic?
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GF (2%)[Z5] arithmetic

o Elements of GF(2%)[Z4] are of form dezé agg

o We can represent them by vectors of 2 elements from GF(2°).

o Addition takes O(2X) additions in GF(2¢) (in time O(¢) = O(log k))

o Multiplication done naively takes O(4) multiplications in GF(2¢) (in
time O(/log ¢ loglog ¢) = O(log k(log log k)?)

@ We can implement multiplication in an FFT style in O(2kk) time and
O(2%k) space.

Theorem (Williams 2009)

The algorithm we have just seen works in O(2¥|E |k log k(log log k)?) time
and O(2kk) space.

Note: Multiplication can be done in polynomial space as well (Koutis).
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Take-home message

We have seen applications of three algebraic tools:
@ Inclusion-Exclusion,
@ Polynomials over finite fields of characteristic two,

@ Group algebras.
A common theme:

@ Relax your constraints (walks instead of paths, cycle covers instead of
Hamiltonian cycles, etc...)
@ Some unwanted (“bad”) objects appear

@ Using an algebraic tool, make the bad objects disappear, so that the
good objects stay.
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